
High-Frequency Multi Bus Servo and Sensor
Communication Using the Dynamixel Protocol

Marc Bestmann, Jasper Güldenstein, and Jianwei Zhang

Hamburg Bit-Bots, Department of Informatics, University of Hamburg,
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany

{bestmann, 5guelden, zhang}@informatik.uni-hamburg.de
http://robocup.informatik.uni-hamburg.de

Abstract. High-frequency control loops are necessary to improve agility
and reactiveness of robots. One of the common limiting bottlenecks is
the communication with the hardware, i.e., reading of sensors values
and writing of actuator commands. In this paper, we investigate the
performance of devices using the widespread Robotis Dynamixel protocol
via an RS-485 bus. Due to the limitations of current approaches, we
present a new multi-bus solution which enables typical humanoid robots
used in RoboCup to have a control loop frequency of more than 1 kHz.
Additionally, we present solutions to integrate sensors into this bus with
high update rates.

Keywords: robotics, humanoid, servo, sensor, control, bus, open source

1 Introduction

Daisy chained servo motors with bus communication are an essential component
of many robots. They reduce the complexity of the mechanical system by mini-
mizing the number of cables required for controlling the actuators. Especially in
robots with many degrees of freedom, i.e., humanoids, it is impractical to control
motors in parallel. Daisy chaining sensors into the bus can further reduce the
number of needed cables.

A widely used standard for peripheral communication is RS-485 (also known
as TIA-485 or EIA-485) [9]. Robust communication in electrically noisy environ-
ments is achieved with a differential signal. One widely used servo motor series
using RS-485 for communication are Dynamixel servos by Robotis1. They are
used in a wide range of scenarios from robot arms and end effectors to small to
full-size humanoids. Some of these applications are described in Section 3.

Fast and reliable communication with the actuators is essential for most
use cases. Since lower latency is synonymous with a faster response to sensory

1 Some subseries (e.g., the MX or X series) are also available with a buffered TTL
interface as a physical communication layer. Servos with a TTL interface can be
connected to the same hardware as ones with an RS-485 interface as explained in
Section 2.

2 M. Bestmann et al.

inputs, motions can be more dynamic and reactive. This is especially important
in scenarios such as collision detection and for motions that maintain or restore
balance of the robot.

In this paper, we survey the existing controller boards to communicate with
servos that utilize RS-485 (or TTL) for serial communication. Furthermore, we
propose new approaches to improve the control loop rate using multi-bus ap-
proaches.

This paper is structured as follows: Section 2 introduces the communication
with Dynamixel servo motors. In Section 3 we present existing controller boards.
Section 4 explains two approaches. First, we show our improved firmware for an
existing controller board. Second, we present our newly developed controller
board. We evaluate the performance of controlling Dynamixel servo motors in
Section 5. Afterward, the integration of sensors into the bus is discussed and
evaluated in Section 6. The ROS [7] based software which interfaces with the
controller boards is described in Section 7. A collection of lessons learned which
might be helpful to anyone using the Dynamixel bus is provided in Section 8.
Finally, the paper concludes with Section 9.

2 Dynamixel Communication

The Dynamixel bus uses a specified master/slave half-duplex protocol with 8 bit,
1 stop bit, and no parity [1]. All Dynamixel MX, X and Pro servos use either
RS-485 or TTL as a physical communication layer. TTL communication can
be emulated using RS-485 transceivers by tying the inverting data line to 2.5 V
using a simple voltage divider. Since the minimum differential voltage on the
RS-485 bus is 1.5 V, the 5 V TTL logic level is interpreted correctly. Each servo
is assigned a unique ID number which is used to address the servo from the
master.

There are two types of packages: instruction packages, sent by the master,
and status packages, sent by the slaves. The master can send write instructions
to set values to the slave’s registers and read instructions to get current register
values returned through a status package. The instruction packages can be either
single, sync, or bulk. Single instructions are only processed by one slave. Sync
packages specify a set of slaves and a range of registers with consecutive addresses
which are read or written. All specified slave devices answer this instruction
sequentially. Bulk packages are similar to sync packages, but it is possible to
specify the registers for each slave individually. All packages start with a header,
the corresponding ID, and the length of the package. The package ends with a
checksum to verify its correctness.

Several features were introduced in the second version of the protocol, i.e.
higher maximum package size, improve checksum and byte stuffing to prevent oc-
curents of headers inside a package. Furthermore, version 2.0 specifies sync read
and bulk write instruction packages which were not officially included previously.
Since it is not compatible but superior to version 1, we are only considering the
newer version of the protocol in the following.

High-Frequency Multi Bus Servo and Sensor Communication 3

read sync read bulk read
i = n ∗ 14 i = 14 + n i = 10 + n ∗ 5
s = n ∗ (11 + r) s = n ∗ (11 + r) s = n ∗ (11 + r)

write sync write bulk write
i = n ∗ (12 + r) i = 14 + n ∗ (r + 1) i = 10 + n ∗ (5 + r)

i: Instruction length [B]
s: Status length [B]
n: Slaves to address
r: Registers to read/write

Table 1: Number of bytes needed for different package types.

Name Microchip Max. Bus Speed [MBaud] No. Bus Prot. 2 Cost

CM7301 FT232R+STM32F103 4.5 1 no
OpenCM9.04 STM32F103 2.5 2 1 yes 50$
OpenCR STM32F746 10 1 yes 180$
Arbotix Pro FT232R+STM32F103 4.5 1 no 150$
Rhoban DXL STM32F103 4.5 (2.25)3 3 yes4 ∼20$
USB2DXL FT232R 3 1 yes 50$
U2D2 FT232H 6 1 yes 50$
QUADDXL FT4232H 12 4 yes ∼40$
Table 2: Comparison of multiple devices available for controlling RS485 or TTL servo
Motors. The maximum bus speed describes the theoretically achievable maximum with
the hardware. Some boards are limited in baud rate by firmware. 1 Discontinued; 2

Limited by transceiver on extension board; 3 Bus 1 can operate at 4.5 Mbps, bus 2 and
3 only at 2.25 Mbps; 4 Not supported by original firmware

While the protocol can be used for any device, it is most commonly used for
the Dynamixel servos. They are a combination of a DC motor, a gearbox and
a microprocessor which acts as a PID controller. The servo can be controlled
by current, velocity, position or a combination of position and maximal current.
In a typical closed-loop application the sensor values of the servos are read,
and new commands are given to the servos in a fixed rate. The performance of
the system depends thereby on how long a read and write cycle takes. Multiple
factors influence the cycle time. These are the baud rate, the number of servos on
the bus, and the number of bytes read and written. Table 1 gives the calculations
for the required lengths of the packages required for single, sync and bulk read
and write instructions. It is visible that the use of sync or bulk packages can
decrease the number of needed bytes and therefore increase the performance.

3 Related Work

The Dynamixel bus system is widespread in different areas of robotics, mainly
legged robots and robotic arms. Multiple robot platforms that use this bus
system are produced by the manufacturer of the Dynamixel motors. These
include the mobile robot TurtleBot3 [4], the small size humanoid robot Dar-
winOP [5], the full-size humanoid robot THORMANG, and the robotic arm
OpenManipulator-X. Many research groups have also developed robot platforms
that use this bus. They are especially widespread in the Humanoid League of
the RoboCup where 32 of 34 teams use the Robotis servos and therefore the

4 M. Bestmann et al.

Master Computer

STM32F103

USB 2.0 FS
12 MBaud

Servos / Sensors

RS485 / TTL
4.5 MBaud

Master Computer

FT4232H

USB 2.0 HS
480 MBaud

RS485 / TTL
12 MBaud

Multi Channel Microprocessor Approach
(Rhoban DXL)

Multi Channel USB to Serial
Approach (QUADDXL)

Servos / Sensors Servos / Sensors

RS485 / TTL
up to 2.25 MBaud

Servos/
Sensors

Single Channel USB to Serial
Approach (USB2DXL / U2D2)

Master Computer

FT232R/H

USB 2.0 FS/HS
12 / 480 MBaud

RS485 / TTL
3 / 6 MBaud

Servos / Sensors

Transceiver

UART
3 / 6 MBaud

SP1485

UART
12Mbaud

SP485 SP485 SP485

UART
4.5 MBaud UART

2.25 Mbaud

Microprocessor Approach
(CM730, Arbotix, OpenCM, OpenCR)

Master Computer

USB 2.0

Microprocessor

Bus Transceiver

UART

RS485 / TTL

Servos / Sensors

Accelerometer

Buttons

Gyroscope
Accelerometer

Buttons

Gyroscope

Servos/
Sensors

SP1485

Servos/
Sensors

SP1485

Servos/
Sensors

SP1485

Fig. 1: Block diagram of different approaches to communicate with servo motors, sensors
and other peripheral devices using the Dynamixel bus. They can be differentiated by the
number of buses (horizontal) and the used chip type (vertical). Our newly proposed
solution is the QUADDXL (bottom right).

Dynamixel bus system2. They are also used in multiple other leagues of the
RoboCup, e.g., the Rescue League.

Since the actuators are used in many robot platforms, multiple controller
solutions are available. Some of them are commercially available from Robotis
or other distributors, e.g., the Arbotix controllers from Interbotix. Furthermore,
there are multiple boards designed by research groups for their robotic platform,
especially in the RoboCup domain. An overview of these boards is shown in
Table 2.

All of these boards connect to a host computer via USB. They can be grouped
into two different approaches. One approach uses a USB to serial converter to di-
rectly translate the USB signal to UART and afterward, by using a transceiver,
to RS-485 or TTL. Two widespread representatives of this approach are the
USB2DXL and U2D2 boards from Robotis, which provide no direct sensor in-
terface. The other approach uses a microprocessor which parses the packages
coming from the host computer via USB. It then either transmits the packages
via UART and an RS485 or TTL transceiver to the bus (if they are destined
for a slave) or directly responds with a status package if values are requested

2 Data from team description papers available at
https://www.robocuphumanoid.org/hl-2019/teams/

High-Frequency Multi Bus Servo and Sensor Communication 5

from sensors (e.g., an IMU) connected to the processor. A block diagram of the
different approaches is shown in Figure 1.
The only example of a controller which supports multiple communication buses
to the servos is the Rhoban DXL Board [2]. Using multiple buses parallelizes
the communication and thereby theoretically decrease the cycle time. Due to
the limbed structure of humanoid robots, up to five separated buses are possible
without increased cabling. A more detailed description of the performance of the
approaches see Section 4.1.

In addition to servo motors, other peripheral devices such as sensors, buttons
or displays can be attached to the Dynamixel bus. The AX-S1, a sensor module
by Robotis, is one of these peripheral devices. Team Rhoban from the RoboCup
Humanoid League developed a foot pressure sensor which can also be attached
to the Dynamixel bus [2]. We present an improvement to Rhoban’s device and
a newly developed IMU module in Section 6.

4 Bus Controllers

Two different approaches were taken to improve the performance of the bus.
First, we improved the well-performing Rhoban DXL Board by changing its
firmware to adapt to protocol 2.0, enabling the use of sync commands. Second,
a USB to four-channel serial chip was used to further increase the performance.
The two approaches are presented in the following and evaluated in Section 5.

4.1 DXL Board

Since the DXL Board was the only available multi-bus controller, this board was
chosen as the current baseline. It supports up to three buses. The original version
had a firmware supporting only protocol 1.0 with a custom implementation of a
sync read. The host computer can send a special sync read command to the board
which translates it into regular read packages for the individual slave devices.
Those instructions are then transmitted on the corresponding bus where the
slave is connected. All status package are then aggregated and returned as a
special response package. Thereby, the board can increase the throughput in
comparison to a single bus, but it violates the protocol specifications.

Since protocol 2.0 specifies a sync read, there is no need for a custom sync read
and it can be replaced by sending a standard sync package from host computer
to the DXL board. This package is split up on the microprocessor of the board
into three sync read packages for the three buses. The resulting status packages
are transmitted to the host computer in correct order to stay in the protocol
specifications. This way the number of required bytes on the servo bus can be
further decreased and no extension of the protocol is necessary. The required
bytes on the USB bus increase since single status packages are transmitted, but
its influence is low since the USB bus has a higher throughput than the servo
bus.

6 M. Bestmann et al.

As a comparison, we implemented a second firmware version which only uses
one bus system. Here, all instructions from the main computer are parsed and
transmitted to the bus if it is not a reading of the directly connected sensors, i.e.,
the IMU or connected buttons. The resulting status packages do not have to be
parsed and can be transmitted directly to the main computer. This reduces the
workload on the microprocessor and the latency resulting from parsing packages.
Furthermore, only one of the UART ports of the microprocessor is capable of
4.5 MBaud. The other two can only achieve a maximum speed of 2.25 MBaud.
Therefore, this is the only way to utilize the highest possible baud rate of the
Dynamixel servos.

4.2 QUADDXL

We developed a simple, high speed, low latency alternative to the DXL Board
using the FT4232H chip from FTDI. It is a single USB 2.0 High Speed to 4
serial channel converter. Its schematic is presented in Figure 2. The virtual com
port drivers required for using the device have been included in the Linux kernel
since version 3.0.0, and the buses are directly accessible as serial device files.
The interface is comparable to the USB2DXL and U2D2, but it offers four bus
systems with up to 12 MBaud each while requiring only one USB connection. No
firmware is required since the chip directly transmits the bytes without parsing
packages. It is therefore also usable for both Dynamixel protocol versions and any
future versions. Furthermore, the latency is lower since no parsing is involved.

5 Evaluation of Servo Communication

The typical control strategy of servo motors in a humanoid robot is a continuous
cycle of reading their sensors’ information and writing new goals. In contrast to
other robot types (e.g., robotic arms or wheeled robots), continuous control is
necessary to keep the robot from falling. A higher frequency of this cycle results
in faster reaction time to disturbances, for example by correcting the torso pose
after an applied force to keep the robot standing. Since using sync reads/writes
is the most efficient way to achieve this (see Section 2), we focused our evaluation
on these instructions.

In our experimental setup, we used 20 Dynamixel MX-64 servos using RS-
485. 10 bytes are necessary to read the current position, velocity and used current
from a single servo motor. The current is used to identify the torque applied by
the servo. Additionally, it is necessary to write 4 bytes to each servo to set a
goal position. If all servos are on the same bus, this results in 568 bytes of data
per update cycle, including header and checksum bytes (see Table 1). In the case
of splitting it up on four buses, the necessary data is 163 byte per bus, due to
additional header bytes. We chose this 20 motor setup since it is similar to many
humanoid robots, such as Darwin-OP[5] and most of the robots in the Humanoid
League which were profoundly influenced by it. We measured the mean update
cycle rate of our approaches together with the USB2DXL as a baseline and

High-Frequency Multi Bus Servo and Sensor Communication 7

FTDI4232H MINI MODULE
U1

TxD/AD0 CN2-7

RxD/AD1 CN2-10

AD2 CN2-9

AD3 CN2-12

AD4 CN2-14

AD5 CN2-13

AD6 CN2-16

AD7 CN2-15

TxD/BD0 CN2-18

RxD/BD1 CN2-17

BD2 CN2-20

BD3 CN2-19

BD4 CN2-22

BD5 CN2-24

BD6 CN2-23

BD7 CN2-26

TxD/CD0 CN3-26

RxD/CD1 CN3-25

CD2 CN3-24

CD3 CN3-23

CD4 CN3-21

CD5 CN3-20

CD6 CN3-19

CD7 CN3-18

TxD/DD0 CN3-17

FTDI4232 module

S
e
ri

a
l
0

S
e
ri

a
l
1

S
e
ri

a
l
2

S
e
ri

a
l
3

RxD/DD1 CN3-16

DD2 CN3-15

DD3 CN3-14

DD4 CN3-13

DD5 CN3-11

DD6 CN3-10

DD7 CN3-9

V3V3CN2-1

V3V3CN2-3

V3V3CN2-5

GNDCN2-2
GNDCN2-4
GNDCN2-6

VIOCN2-11

VIOCN2-21

VBUSCN3-1

VCCCN3-3

GNDCN3-2
GNDCN3-4

VIOCN3-22

SUSPEND#CN2-25

CSCN3-5

CLKCN3-6

DATACN3-7

PWREN#CN3-8

RESET#CN2-8

SP1485
U2

RO1
/RE2
DE3
DI4 GND 5

A 6

B 7

VCC 8

+5V

TXDEN1

RX1
TX1

TXDEN2

RX2
TX2

TXDEN3

RX3
TX3

TXDEN0

dxl_0_p
dxl_0_n

3V3

+5V

TX0
RX0

SP1485
U3

RO1
/RE2
DE3
DI4 GND 5

A 6

B 7

VCC 8

+5V

dxl_1_p
dxl_1_n

SP1485
U4

RO1
/RE2
DE3
DI4 GND 5

A 6

B 7

VCC 8

+5V

dxl_2_p
dxl_2_n

SP1485
U5

RO1
/RE2
DE3
DI4 GND 5

A 6

B 7

VCC 8

+5V

dxl_3_p
dxl_3_n

Fig. 2: Schematic of the QUADDXL. An FT4232H Mini Module (left) is connected to
the host computer via USB. The four RS485 transceivers (right) are connected via the
UART interface. The transceivers provide the required physical communication layer
to a Dynamixel bus each.

additionally provided the theoretical maximum that could be achieved if the
bus would be transmitting these bytes without downtime between packages.
The results are displayed in Table 3 and a comparison between the QUADDXL
and the theoretical maximum is displayed in Figure 3. We were not able to
communicate with the servos on 4.5 MBaud with any controller. Therefore the
highest tested baud rate is 4 MBaud. The reasons for this remain unknown.

For a single bus, the best performance was reached in 1 and 2 MBaud by
the USB2DXL, closely followed by the QUADDXL. The Rhoban DXL per-
formed worse in single and multi-bus approach. 4 MBaud is not possible with
the USB2DXL but would have been with the U2D2. We expect it to perform
slightly better than the QUADDXL in the single bus case (as the USB2DXL did
on lower baud rates), but it was not available to us for testing.

Considering multiple buses, the Rhoban DXL performed worse than the
QUADDXL. Furthermore, the performance of the Rhoban DXL board does not
scale linearly with increasing bus number and baud rate. This indicates that the
processing on the microprocessor is a bottleneck.

Overall, the QUADDXL manages to increase the cycle rate with increasing
bus number and baud rate. It reaches a maximum of 1373 Hz which is three times
higher than its speed on a single bus, and two times higher than the maximum
possible speed on a single bus. The disparity between the real update rates and
the theoretically possible rate is very high (see Figure 3).

8 M. Bestmann et al.

N
o
.

b
u
se

s

M
B

a
u
d

B
o
a
rd

R
a
te

[H
z]

1

1

Theoretical Max 176
R-DXL Single 132
R-DXL Multi 125
USB2DXL 153
QUADDXL 149

2

Theoretical Max. 352
R-DXL Single 215
R-DXL Multi 179
USB2DXL 272
QUADDXL 261

4
Theoretical Max. 704
R-DXL Single 40
QUADDXL 398

2

1
Theoretical Max. 336
R-DXL Multi 185
QUADDXL 285

2
Theoretical Max. 671
R-DXL Multi 219
QUADDXL 497

4
Theoretical Max. 1342
QUADDXL 744

3

1
Theoretical Max. 461
R-DXL Multi 224
QUADDXL 390

2
Theoretical Max. 922
R-DXL Multi 250
QUADDXL 670

4
Theoretical Max. 1843
QUADDXL 1003

4

1
Theoretical Max. 613
QUADDXL 524

2
Theoretical Max. 1227
QUADDXL 923

4
Theoretical Max. 2545
QUADDXL 1373

Fig. 3: Comparison of theoretically possible con-
trol rates with results from QUADDXL. The dis-
parity between both is getting higher with in-
creasing bus speed due to the constant response
delay time.

Fig. 4: Histogram of delays between status pack-
ages in a sync read response from Dynamixel
MX-64 servos. The y-axis is scaled logarithmi-
cally. A total of 61,913 packages was analyzed.
The bucket size for each bar is 20us.

Table 3: Mean update rates for different numbers of buses and baud rates with
sync commands in protocol 2.0. The Rhoban DXL board (R-DXL) was tested
with our newly programmed firmeware in single- and multi-bus version. The
QUADDXL approach provides the best results. We believe that the low rate for
the R-DXL on 4MBaud is due to the microcontroller beeing to slow, resulting
in massive package loss.

High-Frequency Multi Bus Servo and Sensor Communication 9

Fig. 5: Screenshot of a logic analyzer showing two buses with 5 servos each at 4 MBaud,
which are controlled in parallel. The first package on the left is a sync write (SW),
directly followed by a sync read (SR). These are followed by the response packages
(RP) of the servos and then again followed by the sync read of the next cycle. The
delay before response packages caused by the parsing of the packages is clearly visible.

To further investigate this significant difference, a logic analyzer was used. The
results show that a significant portion of the available bus time is used up by
the delay of the response packages from the servos (see Figure 5).
There is not only a delay between the sync read instruction and the first status
but also between each of the status packages. This delay length does not change
with a different baud rate. We assume that this delay derives from the servo’s
need to parse the previous package on the bus. In a sync read, the servo only
sends its status package after it has read the status package of the servo which
was specified before it in the instruction. This ensures that there are not two
servos writing on the bus at the same time. This time varies as an analysis of
the data recorded with the logic analyzer shows (Figure 4).
Since the firmware of the servos is closed source, there is no direct possibility
to solve this problem. When comparing the performance influence of a higher
baudd rate and more buses on a system with long response delays, more buses
scale better than a higher baud rate (see also Figure 3). A higher baud rate can
only decrease the bus time needed for transferring data but does not shorten the
delays. More buses, on the other hand, can parallelize this delay.
The theoretically possible update rate for one bus can be computed using equa-
tion 1, where data is the number of bytes that have to be sent on the bus in each
cycle (see Table 1). Since 10 bit are required to transmit 1 byte of data (1 start
and 1 stop bit), this factor has to be added.
The optimal real rate, i.e., without possible delays introduced by the bus con-
troller or main computer, can be approximated with equation 2 by introducing
an additional factor that takes the response delay of the servo into account.
In this equation, n is the number of servos on the bus and the 50µs are an
approximation for the mean delay time.
While the experiments were conducted on MX-64 servos, we expect other motors
from the MX and X series to behave identically since the same microprocessor
(STM32F103) is used in all of them.

rate[Hz] =
1

data[B]∗10[bit/B]
baud[bit/s]

(1) rate[Hz] =
1

data[B]∗10[bit/B]
baud[bit/s] + n ∗ 50[µs]

(2)

10 M. Bestmann et al.

6 Sensors

Besides the sensor data from the servos themselves, additional modalities are
often needed in the control cycle. In the RoboCup Humanoid League, those are
mostly IMUs and foot pressure sensors. If we want to benefit from the higher
control rate of the servos we also need a similarly high reading rate of the sensors.
Different possibilities to connect sensors to the main computer exist. The most
practical way is to include them on the Dynamixel bus since this reduces the
number of required cables. Furthermore, it allows for interfacing the sensors with
the same software as the servos.
We present and evaluate two different sensor boards that use the Dynamixel
bus for communication to the main computer. Firstly, an IMU sensor module is
introduced in Section 6.1. Secondly, a foot pressure sensor based on Rhoban’s
ForceFoot [2] is presented in Section 6.2.
While only these two boards are presented and evaluated, practically any sen-
sor using common physical communication interfaces can be attached to the
Dynamixel bus using a microprocessor. Furthermore, other peripheral electron-
ics such as buttons and displays can be added to the bus system. The general
approach is presented in the schematic shown in Figure 6.

SP1485
U2

RO1

/RE2

DE3

DI4 GND 5
A 6
B 7

VCC 8

+5V

RX

TX

TX_EN

dxl_p
dxl_n

STM32F103 Breakout Board / Blue Pill
U1

VbattVBAT

PC13PC13

PC14PC14

PC15PC15

PA0PA0

PA1PA1

PA2PA2

PA3PA3

PA4PA4

PA5PA5

PA6PA6

PA7PA7

PB0PB0

PB1PB1

PB10PB10

PB11PB11

NRSTRST

Vcc3.3V3V3

GNDGND

GNDGND1 PB12 PB12

PB13 PB13

PB14 PB14

PB15 PB15

PA8 PA8

PA9 PA9

PA10 PA10

PA11 PA11

PA12 PA12

PA15 PA15

PB3 PB3

PB4 PB4

PB5 PB5

PB6 PB6

PB7 PB7

PB8 PB8

PB9 PB9

5V 5V

GND GND-3

Vcc3.3V 3V3-2

DXL_BUS
JP1

1
2
3
4

100nF
C1 VDXL

+5V

UART

SPI

CAN

I2C

Analog

GPIO

S
e
n
so

r
/

D
is

p
la

y
 /

 B
u

tt
o
n
 /

 .
..

Fig. 6: Schematic for a generic sensor or IO module using the Dynamixel bus. An
STM32F103 breakout board (center), e.g., a Blue Pill, connects via UART to an
RS485 transceiver (right) which is connected to the Dynamixel bus. A multitude of
peripheral devices (left) may be attached to the various communication interfaces
provided by the microcontroller.

High-Frequency Multi Bus Servo and Sensor Communication 11

6.1 IMU

We used an MPU6050 IMU connected to a Maple Mini using I2C at 400KHz. The
Maple Mini is connected to the Dynamixel Bus using an RS-485 transceiver. The
IMU provides the raw linear accelerations and angular velocities in a resolution
of two bytes each. Therefore it was necessary to read 12 bytes in each cycle on
one device. Since this only requires a single read and status package, 37 Bytes
needed to be transmitted (see Table 1). Due to the low number of bytes needed
for this process, it was possible to reach an update cycle of 1kHz. The rate is
limited by the fact, that the microprocessor has a single core can not read the
IMU and communicate on the Dynamixel bus at the same time. Using a multi
core microprocessor could solve this, if higher update rates are required.

6.2 Foot Pressure Sensor

The most widespread foot pressure sensor in the Humanoid League was devel-
oped by Rhoban [8] and consists of four strain gauges with an HX711 ADC
and an ATMega328PB chip to connect it with the Dynamixel bus. While this
approach proved successful, the employed ADC limits the update rate to 80Hz.
Therefore, we developed an improved version, called Bit Foot (see Figure 7),
using an ADS1262. This ADC can sample four analog signals with a resolution

Fig. 7: The Bit Foot, a sensor module following the pattern described in Figure 6. Cleats
are attached to strain gauges at four corners of the foot to measure the contact forces
of the robot’s foot. The analog signals of these strain gauges are fed into an ADC. SPI
is used to interface this microchip from the STM32F103. The board is connected to
the Dynamixel bus via an RS485 transceiver.

12 M. Bestmann et al.

of 32 bit at a rate of up to 38400 Hz. It provides integrated filtering and multi-
ple analog channels. It is connected via SPI to a STM32F103 breakout board
called Blue Pill. This board is connected to the Dynamixel bus via an RS-485
transceiver. We use the raw data for all four strain gauges (32 bytes), but it
would also be feasible to directly provide the center of pressure.
We evaluated the sensor similar to the IMU using regular read packages but
only reached a cycle rate of 697 Hz. The readout of the ADC limits this rate. It
can not read the four sensors at the same time but is only multiplexing between
the different inputs. When changing the input channel, a delay time is needed
before reading new values. This problem could be solved by using a different
or multiple ADCs. Our result is still a significant improvement to the current
baseline.

7 Interface Software

In order provide sensor and servo data to other software components, inter-
facing software is required. We chose the ros control framework [3], which ab-
stracts hardware and provides different controllers. Furthermore, it directly in-
tegrates the hardware into ROS [7] and provides the same interface when using
the Gazebo simulator [6], simplifying the transfer from simulation to the real
robot.
We implemented a hardware interface which can connect the servos and the pre-
viously mentioned sensors. The protocol implementation is based on the Robotis
Dynamixel SDK3 and Workbench4 with the addition of a multi-register sync read
which is necessary to read all values of the servos in a single sync read. The de-
vices and values which should be read can be specified in a configuration file.
Multiple buses can be used in parallel by initiating multiple instances of this
interface, which is essential for the QUADDXL approach.
Different controllers provided by ros control, e.g., position or effort, can be di-
rectly used with this hardware interface. Since the Dynamixel servos provide the
possibility to use Current-based Position Control, where the servo is position con-
trolled but with a maximum current, an additional controller was implemented
to make this possible.

8 Lessons Learned

This section provides some important practical information which was learned
during the work.
Sync Reads The use of sync reads and writes is essential to increase performance
since they reduce the number of bytes needed for each control loop cycle. If
registers are used which have no sequential addresses, the indirect addressing
feature should be used to reduce the number of needed sync packages.

3 http://emanual.robotis.com/docs/en/software/dynamixel/dynamixel sdk/overview/
4 http://emanual.robotis.com/docs/en/software/dynamixel/dynamixel workbench/

High-Frequency Multi Bus Servo and Sensor Communication 13

Return Delay Time The Dynamixel servos have a return delay time value which
adds an additional delay to the response time. The default value is 250 us, which
can make fast communication impossible, even when this delay is set in just a
single servo. At each startup of the robot, this register value should be written to
0, in case that a servo was replaced or reset, since difficult to debug bus timeouts
and performance drops can happen.
Linux Kernel Latency The default value of the Linux USB-serial device latency
timer is 16ms. This is done to reduce the number of needed headers for the USB
packages and the load on the CPU. We set it to 0 to reach the best performance.
Due to the high baud rate of USB 2.0 HS (480 MBaud) the additional header
bytes do not slow down the sensor and servo communication.
Use Highest Baud Rate Possible Even if a fixed cycle time is used which would
be achievable with a lower baud rate, the transfer time of a package is lowered,
thus making the reaction of the servos faster. We did not encounter any problems
with noise or corrupted packages on higher baud rates.
FTDI Bus Controller The latency of the USB to serial devices is lower than the
microprocessor-based approaches since those have to parse the packages which
introduces an additional delay. Furthermore, with the USB to serial approaches,
no additional firmware is necessary, thus simplifying deployment and debugging.
Open Source Firmware It was not possible for us to improve the long reply delays
of the Dynamixel servos. This problem could possibly be solved if the firmware
would have been open sourced.

9 Conclusion

In this paper, we evaluated methods to improve the interfacing of servos and
sensors using the widespread Dynamixel protocol. Our approach of using mul-
tiple buses showed to be the most effective due to the long reply times of the
Dynamixel servos and their limitations in baud rate. Using this, we achieved
a cycle rate of more than 1 KHz on the servos of our robot. Furthermore, we
showed an approach to integrate other sensors with high update rates into the
same bus, thus reducing the number of cables in the robot. The presented solu-
tions are very low-cost and easy to reproduce.
Further improvements on cycle rates could be reached by reducing the response
time of the servos or by extending the Dynamixel protocol to reduce the number
of bytes per cycle. One approach would be a cyclic read and cyclic write, where
the master specifies which values are written and read each cycle before starting.
Afterward, only shortened request and response packages can be sent since all
slaves know which data they need to transmit.
We invite other teams to use our controller board5, control software6, foot pres-
sure sensors7 and sensor connection board8.

5 https://github.com/bit-bots/bitbots quaddxl
6 https://github.com/bit-bots/bitbots lowlevel/tree/master/bitbots ros control
7 https://github.com/bit-bots/bit foot
8 https://github.com/bit-bots/dxl sensor

14 M. Bestmann et al.

Acknowledgments

Thanks to the Hamburg Bit-Bots for support. Thanks to team Rhoban for mak-
ing their hardware and software open source. This research was partially funded
by the German Research Foundation (DFG) and the National Science Founda-
tion of China (NSFC) in project Crossmodal Learning, TRR-169.

References

1. Robotis e-manual. http://emanual.robotis.com/ (accessed 21.04.2019)
2. Allali, J., Deguillaume, L., Fabre, R., Gondry, L., Hofer, L., Ly, O., N’Guyen, S.,

Passault, G., Pirrone, A., Rouxel, Q.: Rhoban football club: Robocup humanoid
kid-size 2016 champion team paper. In: Robot World Cup. Springer (2016)

3. Chitta, S., Marder-Eppstein, E., Meeussen, W., Pradeep, V.,
Rodŕıguez Tsouroukdissian, A., Bohren, J., Coleman, D., Magyar, B., Raiola, G.,
Lüdtke, M., Fernández Perdomo, E.: ros control: A generic and simple control
framework for ros. The Journal of Open Source Software (2017)

4. Guizzo, E., Ackerman, E.: The turtlebot3 teacher [resources hands on]. IEEE Spec-
trum 54(8), 19–20 (2017)

5. Ha, I., Tamura, Y., Asama, H., Han, J., Hong, D.W.: Development of open humanoid
platform darwin-op. In: SICE annual conference 2011. pp. 2178–2181. IEEE (2011)

6. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-
robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). vol. 3, pp. 2149–2154. IEEE (2004)

7. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on open
source software. vol. 3, p. 5. Kobe, Japan (2009)

8. Rouxel, Q., Passault, G., Hofer, L., N’Guyen, S., Ly, O.: Rhoban hardware and
software open source contributions for robocup humanoids. In: Proceedings of 10th
Workshop on Humanoid Soccer Robots, IEEE-RAS Int. Conference on Humanoid
Robots, Seoul, Korea (2015)

9. Soltero, M., Zhang, J., Cockril, C.: RS-422 and RS-485 Standards Overview and
System Configurations (2002), Technical Report, Texas Instruments

