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Abstract—This paper presents an approach for using an image-
based heat map as measurement input of a particle filter. Pixels of
the heat map are transformed into Cartesian space relative to the
robot and regarded as single measurements. The approach uses
a novel observation model to weight the particles accordingly to
the heat map pixels. While this paper focuses on handling FCNN
output, the method is also applicable to other feature recognition
methods like saliency approaches. The proposed method shows
similar performance in standard cases and huge improvements
on erroneous input compared to the conventional approach.

Index Terms—filtering, state estimation, image processing

I. INTRODUCTION

Since the success of AlexNet [1] in the ImageNet chal-
lenge [2], neural networks are widely regarded as state of
the art in object detection methods. In recent years, fully
convolutional neural networks (FCNNs) were used in image
segmentation [3] and later also in object localization [4], [5].

The output of these networks is usually a two-dimensional
heat map representation of the network activation in immediate
positional correlation to the input image. In the conventional
approach, clustering is applied to the FCNN output to get
the position of the detected object [6]. In the case of mobile
robots, the filtering of this position is then performed in
Cartesian space to take the robot’s odometry into account. This
is commonly done by using Kalman [7] or particle filters [8].

This paper proposes a novel filtering approach by directly
transforming the raw image-based heat map output onto the
ground plane and then applying a particle filter directly on
the transformed pixels. While doing this, each pixel of the
heat map is regarded as a single measurement. Afterward,
clustering is performed on these particles, resulting in the
filtered position estimation of the object. The approach aims
to reduce the information loss between the FCNN and the
filtering process by removing the heat map clustering step in
the image space and propagating all information available in
the heat map into the particle filter. Thereby, all observations
are taken over into the filter, improving the state prediction,
especially in edge cases and when data from a secondary
source, e.g. other agents, is fused.

This research was partially funded by the German Research Foundation
(DFG) and the National Science Foundation of China (NSFC) in project
Crossmodal Learning, TRR-169.

In this paper, we evaluate the performance of this approach
using the RoboCup Humanoid Soccer domain [9] as a case
study. In this domain, it is necessary to track the position of
the ball on a soccer field, while handling challenges like fast
movements and occlusion from other robots.

Fig. 1 gives an overview of the approach. The FCNN is
applied onto the input image (Fig. 1a) and produces a heat
map (Fig. 1b). Instead of clustering the heat map in the image
space, it is projected into Cartesian space relative to the robot.
Fig. 1c depicts particles of the filter representing estimations
of the object position and the measurements resulting from the
heat map input.

The paper is structured as follows: Firstly, an overview of
the current work in this field is given in Section II. Secondly,
the approach is presented in Section III. It is then evaluated
in Section IV. Finally, the paper concludes with Section V.

II. RELATED WORK

There are two main scenarios for position estimation in
robotics. Firstly, the self-localization of a robot which weights
the state estimates based on the ability to map measurements
onto known facts about the environment [10]. Secondly, the
tracking of objects in a relative position to a robot. In this
case, objects are tracked directly in the image space and the
result is transformed to a Cartesian position.

While the paper at hand focuses on object tracking, both
scenarios are relevant and will be discussed in the following
subsections.

A. Vision-Based Robot Self-Localization

Anati et al. [11] present a way to localize based on the
heat maps resulting from soft object detection methods. These
heat maps are generated using a histogram of gradient energies
and histograms of quantized colors to classify the input and
then matched onto the existing map, resulting in a rating of a
position estimation of the robot. To the best of our knowledge,
this is the only previous work which transforms a heat map
output directly into Cartesian space and then filters it there.

B. Object Tracking

Liu et al. [6] used a sliding window CNN approach on
regions of interest (ROIs) to compute a heat map of likelihood.



(a) The input image of the vision pipeline showing the typical domain
of a soccer field with other robots, field markings, goals and background
objects. The AprilTag is added in this setup to provide ground truth for
the evaluation. Before the image is processed in the FCNN, it is resized to
200× 150 pixels using interpolation.

(b) The heat map generated by the FCNN given the input image from (a).
Everything above the green field is cut off and marked blue to show the area
which is removed during post-processing, as it is not possible to compute
the positions of these pixels in Cartesian space. Besides a large activation
for the ball, smaller false positives are visible for one of the goal posts and
the penalty mark. The heat map was resized to allow an undistorted image
and to keep the aspect ratio of the original input image.

(c) View from above showing the transformed heat map from (b) (grey),
the particles (yellow), the position of the robot (brown) and the position
of the AprilTag. The particles are accumulated around the area with a high
activation of the FCNN while ignoring the false positives due to the previous
belief. Due to a high diffusion and a large number of particles, the particle
cloud is large but even so has a high density in the center close to the
position of the AprilTag representing the ground truth. As only pixels with an
activation over a certain threshold are transformed, the image areas without
any activation cannot be seen. The explorer particles (see Sect. III-E) are
visible in a larger distance from the cluster.

Fig. 1. The input image 1a of the FCNN, the resulting heat map 1b and the
transformed measurements mapped into Cartesian space 1c.
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Fig. 2. Schematic representation of the filtering process. The particles are
initialized following an initial distribution. Then, the filter runs at a fixed rate
independent to the measurement acquisition. The FCNN generates a heat map
based on the input image. Each pixel is regarded as a measurement which
is transformed into Cartesian space and then applied on the particle filter in
the measurement update step. Based on the odometry input the movement is
applied onto the particles.

Based on this, the position of the highest value in the heat map
and the distance to the last one (used as velocity) are fed into
the particle filter.

In [12] and [13], Buyer et al. improved the performance of
object tracking in an image with a particle filter by using a
multi-layer approach. Each particle is assigned to an area in
the binary input image and its weight is adapted accordingly.

Haarnoya et al. presented a method to train discriminative
deterministic state estimators [14] which take images as an
input. This is achieved by feeding the raw input images into a
convolutional feed-forward network which produces an ”inter-
mediate observation” and a matrix. The network is connected
to a Kalman filter which uses the intermediate observation as
measurement and the matrix as covariance matrix to filter the
input. While training, the loss of the network is calculated
by the difference between the ground truth and the prediction
of the Kalman filter. Thus, the network learns to generate the
optimal input for the filter from an image. However, due to the
restrictions of the Kalman filter, multi-modal and non-linear
filtering are not possible without adaptions. Additionally, by
the reduction of the measurement to a single state, a lot of
information is lost before filtering.

All methods presented in this section apply the filtering step
on the image space. This is not applicable to mobile robots
because due to camera movement the targets are not trackable
as their movement in the image depends on the movement of
the object, the camera and the robot itself.

III. APPROACH

Our approach follows the conventional particle filter prin-
ciple as depicted in Fig. 2. After initialization based on a
given distribution, the particle filter runs independently to the
measurement input at a fixed rate. The belief state of the filter
models the position of the object in Cartesian space p = (x, y).



A. Filter Input
To use every pixel of the FCNN-output in the particle filter,

every pixel is treated as a measurement in the form m =
(r, w), r being the position of the transformed particle in the
2-dimensional space (x, y) and w ∈ R[0 : 1] representing the
weight of the measurement which is equal to the normalized
value of the corresponding pixel in the heat map.

The high amount of measurements can be reduced by
applying a minimal activation threshold and by reducing the
size of the heat map. Both of these methods can be applied
before transforming the pixels, thus significantly improving
computational performance. Using a threshold leads only to
exclusion of pixels with a low activation, thus reducing the
number of measurements with a comparably low impact on
the particle weights (see Section III-B). Downscaling of the
heat map also reduces the number of transformed pixels but
with a higher impact on the particle weights, as all information
is reduced independently of their activation level.

B. Observation Model
A novel observation model is necessary to accommodate the

high number of measurements. A particle is defined similarly
to a measurement consisting of a position r representing the
state and a weight w. The distance δti,j between particle pti
and measurement mt

j is computed for all particles p ∈ P t to
all measurements m ∈ M t. During the measurement update
step, the particle weights w(pti) for every index i at current
time t are computed using δti,j .

With increasing distance to the robot, the density of mea-
surements decreases. Thus, the distance between a particle and
surrounding measurements increases.

The weight of measurement mt
i is denoted as w(mt

i). To
reduce the number of measurements taken into consideration
for a particles weight, we use a set of the k measurements
with the smallest distance to a particle pti denoted as Ct

i . This
results in a consideration of the local environment of a particle.
Higher values for k translate to a larger environment taken into
account.

w(pti) =

k∑
j=1

w(mt
j)

δti,j
with mt

j ∈ Ct
i (1)

C. Measurement Aging
The particle filter runs at a fixed rate. The acquisition of

measurements consists of multiple steps: the preprocessing,
execution of the FCNN, post-processing of the FCNN output
and transformation of the pixels into the world. Therefore, the
measurement-input-rate can be lower than the resampling rate
of the particle filter and can also unpredictably vary over time.
Our solution to the problem is measurement aging.

By decreasing the weight of each measurement by a con-
stant value v in each step of the particle filter (2), the impact
of the measurements decreases.

M t+1 =

{
M t+1 |M t+1| > 0

{w(mt
i)− v|∀mt

i ∈M t} |M t+1| = 0
(2)

Because of the high computational cost of measuring the
distance between all P t to a mt

i and the possibility of a
w(mt

i) to sink below 0, a threshold value l ≥ 0 is used. Every
measurement mt

i with w(mt
i) < l gets removed from M t.

If no measurement is available, each particle gets the same
weight, allowing a completely random resampling.

As the robot moves, the movement model proposed in
Section III-D has to be applied to measurements, too.

D. Movement Model

Since the state space of the filter is relative to the mobile
robot, a movement model for the particles is necessary when
the robot moves. The movement model gets the linear and
angular odometry of the robot as input and translates it into
a movement of the particles in Cartesian space. To take mea-
surement inaccuracies into consideration in the filter, Gaussian
noise is added to the particle movement. Additionally, in each
particle filter step, Gaussian noise is added to the position of
each particle, causing them to drift apart when no measure-
ment is available and thus to represent the growing uncertainty.

E. Explorer Particles

Depending on the use case and the FCNN, multiple regions
with high activations can occur (see Fig. 5 and 7a). This
situation requires multi-modal filtering capabilities. While the
particle filter is able to model the situation, it can get stuck
in local optima because particles can accumulate at a single
measurement cluster.

In [15]–[18] several approaches for multi-target tracking are
presented.

In our case, only a single target is tracked. Detections
outside of the main cluster should not be ignored to prevent
convergence on a false positive while a true positive is also
detected.

We introduce explorer particles to approach this problem.
Explorer particles are an adaption of the sequential impor-
tance resampling algorithm [8], which spawns a configurable
fraction of the particles with the lowest support randomly
according to the current probability-distribution of the particle
state in Cartesian space. Thus, creating the possibility for the
particles to get a high weight resulting in multiple particles
getting resampled in the same area.

In Fig. 1c, explorer particles are visible as the sparsely
distributed particles distant from the measurements.

F. Output Generation

After each filtering step, a compressed state estimation of
the filter can be extracted from the current particle set P t.
The optimal output generation algorithm is highly dependent
on the use case of the filter.

In unimodal environments (estimating the position of a sin-
gle object), a mean of all or a certain share of the highest rated
particles is a computationally cheap and easily implementable
option.

Multi-modal state distributions and features like a covari-
ance matrix of the generated result require more sophisticated



Fig. 3. Graphic representation of the transform method. The camera pose is
measured via forward kinematics. A ray is formed from this pose through a
pixel in the image plane (blue). The intersection of this ray with the ground
plane (red) is equal to the position of the pixel on the ground. Since the ball
is higher than the floor, the intersection plane (dotted) is lifted by the half of
the ball height to compensate the perspective error.

particle clustering methods. K-means [19] separates the par-
ticles into a predefined number of clusters. A soft clustering
method based on Gaussian mixture models (GMMs) like the
expectation-maximization algorithm (EM-algorithm) [20] also
generates a predefined number of clusters but describes them
as GMMs. With x-means [21] and extended versions of the
EM-algorithm [13] it is also possible to detect the optimal
number of clusters.

In our case, the mean of 95% of the particles with the
highest support is used.

IV. EVALUATION

The evaluation of this approach shows that there is no
performance trade-off compared to the conventional approach
in trivial cases. Different edge-cases are highlighted in which
the immediate inclusion of the FCNN heat map improves the
state estimation.

A. Measurement Generation

In our evaluation, we use the FCNN model proposed by
Speck et al. [4]. It is trained on publicly available annotated
images from ImageTagger [22] to detect a soccer ball in the
RoboCup environment and is currently in use as part of the
vision system of the Hamburg Bit-Bots [23]. Unedited RGB
camera images scaled down to the input size of 200×150×3
are fed into the net in the vision pipeline. Since no depth
information is available from the sensor, the distances of the
pixels are computed by the assumption that the ball is lying
on the floor and the knowledge of the ball size, as shown in
Fig. 3. The pose of the camera is computed using forward
kinematics and thus invokes measurement errors especially
when walking. Using this method only pixels below the
horizon can be transformed. Therefore, the post-processing
handles this by cropping the images above the horizon to
remove non-transformable pixels.

B. Method

Our approach is compared to a particle filter which takes
the center of highest activation from the same FCNN as a

TABLE I
OVERVIEW OF THE ERRORS MEASURED.

mean error
[m]

max error
[m]

standard deviation
of the errors [m]

our approach 0.0771 0.54 0.07714
conventional approach 0.0879 0.61 0.08142
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Fig. 4. Bar chart depicting the distribution of the measurement error of our
approach (red) compared to the error produced by the conventional method
(blue). The error is measured as the Euclidean distance of the measurement
(filter output) to the ground truth in meters. This chart is the result of 5567
measurements for both methods taken in the same scenario. There was no
error larger than 0.61 m (see Table I).

single relative measurement. This approach is similar to the
measurement acquisition in [6], but with a heat map generated
by an FCNN as input. The output of both of these filters
is compared to the ground truth, measured by an AprilTag
detector [24], [25]. The measurement setup can be seen in
Fig. 1a. The AprilTag measurements still contain some noise,
which is significantly less than the error occurring in the
detection methods and therefore negligible. Both methods are
configured in the same way and solely differ in the observation
model (see Section III-B).

In this unimodal environment (there is always only one ball
in the soccer field), the mean of 95% of the highest rated
particles is used to generate the output state, as the weakest
5% of the particles are used as explorer particles.

C. Results

To evaluate the performance of the proposed method, the
output error of the conventional method and our approach was
measured for 5567 continuous filter steps. While measuring,
the object was moved in sight of the robot with varying
velocities and in multiple directions. The robot itself was not
moving. The scenario does not include errors resulting from
edge cases discussed in Section IV-D. The results listed in
Table I shows a better performance of our proposed method
compared to the conventional approach. It represents the error
measured as the Euclidean distance of the measurement (filter



(a) The output of the vision pipeline
with the ball detected via cluster-
ing in the image frame (green) and
points of field lines (red).

(b) FCNN output with false positive
activations from goal posts and white
objects near the field border. The
cluster detected by cluster detection
in the image frame is marked in red
and its center, which will be the filter
input, is marked in blue.

Fig. 5. False positive activations in the FCNN output and the resulting
error in the post-processing. A detection of these shapes is necessary since a
partially concealed ball also results in this form of activation. By feeding all
information available in the heat map into the filter, the true positive in the
measurement is kept.
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(b) With false-positive detections in
the FCNN

Fig. 6. The traces depicted are the estimate of the ball pose estimated in
Cartesian space relative to the robot. The ground truth is marked in green,
the result of the conventional approach in blue and our method in red.

output) to the ground truth in meters. The values are the result
of 5567 measurements. The compared methods show a signif-
icant difference in the distribution of the measurement error
(see Fig. 4). Despite the improvements over the conventional
method, this work focuses on the performance of the filter in
edge-cases in the following section.

D. Edge Cases

The approach focuses on a stable performance despite
significant errors in the FCNN output while maintaining com-
parable performance to conventional approaches in standard
cases.

Fig. 5 shows the detection of false positives in the FCNN
output. Especially in a unimodal environment, this issue
is highly problematic in the conventional approach, as the
clustering algorithm only outputs a single measurement. By
feeding the information into the particle filter directly, the error
resulting from the detection of false positives can be reduced.
As the particles accumulate in the area of the correctly detected
object, they do not drift away from it immediately when
another wrong measurement is added (see Fig. 6b).

(a) Exemplary detection of multiple
clusters in a single object overlay-
ing the input image. The result of
a cluster detection by threshold is
drawn into the heat map (shape: red,
center: blue). The issue occurs fre-
quently while detecting objects which
are partly concealed or close to the
robot.

(b) Particles following uncertainties
in the measurement. In our case, the
situation occurs while detecting ob-
jects far away from the sensor. The
high distance is the reason for the
gaps in the measurement pixels which
were spread out due to the transfor-
mation.

Fig. 7. Examples of edge cases in the FCNN output

A video taken while recording the traces in Fig. 6 demon-
strating the advantages of the proposed method is available
online [26].

Especially while detecting objects very close to the robot,
a resulting heat map could look like the one in Fig. 7a. By
clustering directly in the heat map, only a fraction of the object
is detected. This leads to a wrongly located ball center on
the image and therefore to a wrong position on the ground
plane. The immediate transformation of the heat map into
Cartesian space allows the filter to take the distance to the
object into consideration. Thus, the two clusters in the heat
map are located closely together in Cartesian space, particles
accumulate in both of them with their mean in the center of
the actual object.

Measurement uncertainties in the heat map arising from fast
object movement or distortions due to the transformation are
represented in the particle distribution (see Fig. 7b). In the
conventional approach, this information is lost in the clustering
process of the heat map.

E. Discussion

Depending on the amount of measurements (|M |) and
particles (|P |) and k (the number of the closest measure-
ments taken into account), the runtime of the approach grows
in Θ(|P |(|M |+ |M |log(|M |) + k)) (based on the method
presented in Section III-B). As the input size |M | is highly
dependent on the heat map, the threshold, the applied com-
pression of the heat map (see Section III-A) and the number of
particles, the computational effort is scalable to the require-
ments and resources of the environment. Another option to
limit the required computational power would be the reduction
of measurements after transforming and thresholding to set a
maximum amount of measurements. While the application of
the observation model is costly, computational effort is spared
in the vision pipeline by removing the necessity to detect
clusters in the heat map.



As depth cameras are not allowed in RoboCup [9], we do
not use them in the approach presented here. In other less
restricted environments, the transformation can be changed to
use RGB-D. Thereby, errors can be reduced and the detection
is not limited to an area below the horizon.

V. CONCLUSION & FURTHER WORK

In this paper, we presented a novel approach on state
estimation of objects on the basis of heat maps. The results in
the standard case are comparable to the conventional approach
while the performance in edge case situations is more stable
and reliable (see Table I and Fig. 4).

The drastically increased amount of information used to
measure the weight of the particles has a lot of potential for
further use and analysis.

The option to handle heat maps representing the likelihood
distribution for the object to detect could be evaluated for other
detection methods aside from FCNNs like [27] or [28].

As mentioned in III-F, the EM-algorithm or an adaption
of it for multi-modal environments can be used to cluster the
particles. The output in form of a Gaussian mixture model
represents the distribution of the particles in the filter. It can
be used for further processing and will represent the measure-
ment uncertainties which originated in the vision system in a
compact form. It has to be evaluated in the future, whether
in a multi-robot system, the inference of the resulting GMMs
could result in more precise measurements.

As this method was developed and tested in the RoboCup
environment, its applicability to other domains remains to be
evaluated further in the future.
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