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Abstract. In the RoboCup Humanoid Soccer League, the orientation of
the autonomous mobile robot on the field plane is critical i.e. to distinguish
between the own and the opponent’s goal. We propose our Visual Compass
approach using only the camera image to estimate the robot’s orientation
on a symmetrical soccer field. Our modular Open Source implementation
is written in Python and supports the ROS framework. The approach is
discussed and evaluated against a comprehensive data set recorded on a
tournament RoboCup soccer field.
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1 Introduction
written by Jan Gutsche

Humanoid robotics is an ongoing field of research [9,26,13]. For promoting and moti-
vating research and development of mobile robotics and Al, the idea of the RoboCup
competition and humanoid robots playing soccer has been around since the early
1990s [16]. During a game of soccer, it is critical for the autonomous mobile robot
to know its own orientation on the field plane, i.e. to distinguish between the own
and the opponent’s goal.

The set of rules of the humanoid soccer league will be adapted each year to match
the FIFA rules by 2050 [17] and restricts the usage to only human-like senses [18].
Obtaining the orientation of the robot on the field plane can be part of the self-
localization system and is not trivial to determine since the field itself is symmetric
(color-coded landmark poles were removed in the set of rules in 2013 [19, Section
1.3]). Relative orientation estimations of the robot’s odometry or IMU (Inertial
Measurement Unit) can drift over time because of accumulating measurement errors.
This especially becomes a problem after the robot has fallen (see Section 2).

Therefore a robust solution for obtaining the orientation, which is independent of
the game’s progress or the robot’s state, is needed. This paper promotes our modular
Visual Compass approach. It utilizes well-known feature recognition algorithms to
create a pre-recorded map of the environment the robot can use to find its own
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orientation during the game (see Section 3). As those algorithms are robust against
rotation, scaling and position inside the image, it is possible to recognize those features
from different positions on the field (see Section 4).

The Visual Compass approach presented in this paper has been developed in
the scope of the course ”Praktikum RoboCup — Fuflballspielende Roboter” in strong
relation to the Hamburg Bit-Bots RoboCup Humanoid Soccer league kid-size team [8].

Our approach is implemented as ROS nodes in Python using OpenCV among other
libraries. ROS (Robot Operating System) is a middleware originally developed by
Willow Garage for robotic systems [15]. The ROS framework provides message passing
between nodes as a communication layer upon the operating system used on the
robot. Therefore ROS nodes are highly interchangeable and the integration of nodes
into the own software stack becomes straightforward. Besides that, ROS also provides
debugging and visualization tools. Our ROS nodes are using standardized ROS-
messages proposed by Bestmann et. al. in 2017 for the Humanoid Soccer League [4].

To introduce the topic, we give an overview of various approaches on the calcula-
tion of the orientation (see Section 2.1). After that, we shortly describe three different
algorithms for feature recognition: AKAZE, ORB and SIFT (see Section 2.2). In
Section 3, we describe our architecture in detail and illustrate the angle and confidence
calculation. Afterwards, we evaluate our results in Section 4. Finally, Section 5 gives
a short summary and an outlook on future work on this topic.

2 Related Work

written by Jan Gutsche

In this Section, first, we discuss related approaches for solving the similar problem
of estimating the robot’s orientation. Second, we give a short overview of the used
image feature detection algorithms.

2.1 Related Approaches

Several approaches on orientation estimation are also based on feature detection of
camera images.

Visual odometry as proposed in [14] is a robust SLAM (Synchronous Localization
and Mapping) mechanism for autonomous vehicles and robots such as Mars rovers [12].
Visual odometry analyses the displacement of detected and matched image features
between image frame pairs, called optical flow. Thus an estimation of trajectories
of the camera and further the position and orientation of the camera can be achieved.
Nistér et. al. demonstrated that their approach is suitable for estimating the position
of the vehicle or robot for hundreds of meters, "based only on visual input from
relatively small field of view cameras” [14, Section 6]. Since visual odometry only uses
the camera image as an input, it is independent of other sensor information such as the
GPS signal (Global Positioning System) or IMU data. This allows position estimation
even in environments with poor GPS signal quality (e.g. indoor). An improvement of
the position and orientation estimation can be achieved by fusing all these input signals

The application of this approach in humanoid robotics is presumably problematic,
because it is very hard to exactly track the camera movement while the robot falls.
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In this scenario with fast motion, the camera captures probably only grass of the
field with few to zero recognizable features. The feature comparison of such two
images could be inaccurate. Since visual odometry relies on the correct detection
over the whole image sequence, the measurement error would continue on and could
accumulate with further inaccuracies. Therefore the estimation could be shifted and
this result could lead to false decisions.

Ceiling detection. The humanoid league team WZF-Wolves developed in principle
a very similar approach to ours [28]. They used SIFT as an image feature detection
algorithm to match those features with prerecorded images of the ceiling with known
orientation. Therefore this orientation estimation does not have the disadvantages of
the relative measurements, e.g. visual odometry or IMU. Unfortunately, their approach
was never evaluated since. Also, this method is probably not reliable in case of a
symmetric or homogeneous ceiling. Further, obtaining the robot’s orientation by this
approach requires the robot to look straight upwards to the ceiling, which does happen
rarely during a game. Thus a special behavior for the camera motors is needed.

Color histogram. Another approach based on the camera image, but does not
share the drawbacks of relative methods, is using color histograms. Color histograms
simply show the frequency of every color of the color space (e.g. RGB, HSV) in the
image. Therefore histograms of images recorded during the soccer game could be
matched against prerecorded ones. Those prerecorded histograms are linked to the
orientation, so the robot’s orientation during the game can be deduced. Since color
histograms do not model any structural information about the scene, two completely
unrelated images could have very similar histograms. For this approach we were also
not able to reference any evaluation data.

Odometry estimates position changes over time by using information from the
movement actuators of the robot. For example in wheeled robots, the measured rota-
tion of wheel encoders can be used to determine the position relative to the starting
point. Thought noisy, Thompson et. al. showed that odometry is also applicable for
bipedal humanoid robots [25].

In case of a fallen robot, this method has a related problem as visual odometry.
Odometry only uses the measured movements of the robot’s joints for position and
orientation estimations, assuming that the robot always stands upright. So after a
fall, the robots position and orientation could have changed by comparison to the
originally tracked ones. Since odometry is based on a sequence of measurements,
possible errors accumulate and lead to false estimations.

IMU (inertial measurement unit) contains accelerometers and gyroscopes for sensing
relative position, velocity, acceleration and rotational rate of the observed object
in six-degrees-of-freedom [21, 4.1.7 p.121]. The unit often also includes a magnetic
compass, but this sensor is not allowed in the humanoid soccer league.

The position and orientation estimations of an IMU are also based on a relative
sequence of measurements and therefore prune to accumulating errors. These errors
could appear while the fast movements of a robot’s fall.
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Several other approaches (e.g. Fourier transformation or convolutional autoencoder)
were considered as possible solutions for the problem. But we have chosen our Visual
Compass approach as described further in Section 3, because we wanted to avoid any
accumulating errors and liked the idea of using image feature detection.

2.2 Feature Detection
written by Florian Vahl

In the following part, we are looking at the local image feature detection algorithms
SIFT, ORB and AKAZE. All described algorithms are mostly invariant against
translation, rotation, scale and light changes. The detected image features are corners
in the output of an edge detection algorithm [5].

SIFT (scale-invariant feature transform) uses a difference of Gaussians band-pass fil-
ter to detect the local image features. Features are described by local histograms in mul-
tiple directions around the feature as shown in [11]. Each feature is represented by a de-
scription vector. Descriptions vectors can be compared using their euclidean distance.

AKAZE (accelerated KAZE) is an improved version of the KAZE algorithm, that
is similar to SIFT. Instead of Gaussian blurring, it uses means of nonlinear diffusion
filtering, which respects certain image edges in the blurring process [1].

ORB (oriented FAST and rotated BRIEF) is a combination of the FAST [20] called
corner detection algorithm and a probabilistic rBRIEF descriptor. Each image feature
found by FAST gets described by a binary description vector generated by rBRIEF [2].
Similar features are compared by comparing their hemming distance.

3 Approach
written by Florian Vahl

To solve the challenges described in Section 1, we are using image features detected
by the SIFT, ORB or AKAZE algorithms. Our architecture is generally independent
of the used feature detection algorithm.

A map which is linking the image features with an orientation describes the
robot’s environment beyond the field boundary. In the game, image features found
in the current image are matched with the features saved in the map. This is used
to generate an orientation estimation using the orientation of the matched features.

3.1 Training

Before the game starts, a map gets generated. The described principle is shown in
the Training segment of Figure 1.

The robot is placed with a predefined orientation on one or more locations on the
field. Then the robot records images in every direction, except directions without any
benefit, like straight up or those which only show the field itself. Due to its symmetrical
design, features found on the field don’t contain enough useful information. Also, we try
to search for very distant features to minimize the errors introduced by the translation
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Fig. 1. The Visual Compass pipeline

of the robot on the field. The usage of multiple field locations in the map-generation
process should also reduce the effect of the robot’s translation on the field.

In the map generation process, the robot’s orientation on the field is known.
This allows us to annotate each detected image feature with an angle. The angle
gets calculated by combining the known orientation of the robot with the transform
from the robot’s base footprint frame (as described in REP 120 [24]) to the camera
frame and the position of the feature in the image. The transform is done using
ROS and tf2 forward kinematics [7]. Due to a camera calibration matrix, we are also
able to calculate the angle offset regarding the feature position in the image. This
is important if the robot uses a lens with a large field of view.

Each detected image feature is described by a description vector generated by the
SIFT, ORB or AKAZE algorithm. The pickle encoded file contains the description
vectors of the detected features and a list of corresponding annotation angles. This
feature map file can be spread between the robots before the game starts, to minimize
the map generation effort.

3.2 Prediction

In the game, the Visual Compass runs as shown in the Prediction segment of Figure 1.
It uses the selected feature detection algorithm to detect all significant image features
in the current camera image.

Matching The descriptors of these features get matched with corresponding features
in the feature map via a k-nearest neighbor algorithm. Instead of comparing the de-
scriptor of the found image feature only to the nearest neighbor and use global distance
threshold, the distances of the nearest and the second nearest neighbor are compared
with each other like D. Lowe et. al. described in [11]. This makes a global threshold
obsolete. The description of a feature is rotation and scale-invariant. This is important
to our implementation because we want to identify as many features as possible, even
from different perspectives, due to the translational movement of the robot on the field.
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Orientation estimation (written by Benedikt Ostendorf)

After the matching stage, we can associate the features found in the current
camera image with the angles from our feature map, which contains known good
values after initialization. At this stage there usually are many such features with
different associations. These need to be distilled down to a single direction together
with a confidence value to signal the quality of the prediction.

The algorithm used to reduce the results of the matching stage into one final
result is quite simple. We interpret the directions as two-dimensional vectors with unit
length. Any two such vectors can be added up, resulting in a new vector pointing in
the average direction of both, for some definition of average. Because vector addition
is commutative and associative we can just add up all the directions as vectors. The
resulting vector can easily be converted back into a direction. This direction is used
as the output of our Visual Compass.

Together with the predicted direction we also want to compute a confidence
measure for the prediction. Such a measure should increase when measurements agree
and decrease when measurements disagree. In other words, the change in the measure
should be proportional to the strength of agreement in the measurements. It is easy
to show that the magnitude of the vector described above is such a measure.

Suppose we convert directions into vectors of unit length as described above. The
magnitude of the sum of those vectors is maximal if the directions are the same.
Similarly, the magnitude of the sum of both vectors is minimal if the directions are
opposites of another. Additionally, the magnitude of the sum of two vectors increases
as the difference in direction, approximated by the dot product, decreases. Therefore
the magnitude of such a vector can be used as a confidence measure. The confidence
measure should be normalized to the interval [0,1] for ease of use. This is achieved
by dividing the magnitude of our result vector by the maximal magnitude that can
be reached. This unlikely scenario happens when all features found in the camera
image are associated with the same direction.

To protect the compass from bad predictions due to a few number of features
we scale down the confidence based on the number of features. This is done by
multiplying the confidence value described above with a value that varies with the
number of features. For this value we use

1—el=) (1)

where n is the number of features used in the calculation and s is some scalar from
the settings of our compass. This value is close to 0 for small values of n and close to
1 for large values of n. By choosing an appropriate value for s it is possible to require
any number of features for a prediction with high confidence. In our implementation
s is based on the number of features that were detected in the training stage. Should
we encounter significantly fewer features during the prediction stage the confidence
will be small.

The result of our Visual Compass prediction is a pair containing a direction from
0 to 27 and a confidence from 0 to 1. These values are acquired by summing up
all directions from the matching stage as two-dimensional vectors. The direction of
this resulting vector is used as the reported direction, together with the normalized
magnitude as a confidence value.
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3.3 Architecture
written by Florian Vahl
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Fig. 2. The different layers of the Visual Compass software architecture. The handler layer
consists of handlers to run the Visual Compass in different environments. In the worker
layer, different implementations of the Visual Compass are integrated. The matcher layer
abstracts the different feature detection/matching algorithms.

Our approach is implemented in Python, supporting the ROS framework. For
image processing, we are using the libraries OpenCV [6] and NumPy [27]. OpenCV is
also used for the ORB and AKAZE feature detection algorithm, while SIFT uses the
Silx [22] library. All implementations of the feature detection algorithms are based
on OpenCL [23], which allows multi-core CPU and also GPU execution, to improve
the processing speed.

The architecture of the Visual Compass consists of multiple abstraction layers
as seen in Figure 2. These layers allow the compass to operate in different software
environments like ROS or our evaluator. On the other side, this modular approach
allows us to test and compare different approaches, like the multiple/binary worker
or the different feature detection algorithms.

Handler As seen in Figure 2 the Visual Compass supports many different environ-
ments. Each of these environments has its own handler that communicates with the
worker instance.

First of all, there is a ROS independent Dummy handler. It is used to simply
run a Visual Compass instance without the need of a whole ROS environment. The
Dummy handler supports a webcam or image set as the image source. The map
creation is simply managed via a CLI control.

The Evaluator is also ROS independent. It executes the Visual Compass instance
on a predefined test data set. See evaluation in Section 4 for more details.
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The ROS interface for the Visual Compass consists of two separate ROS nodes.
The Visual Compass setup node coordinates the map creation in the robot environ-
ment. First of all, it manages the user input that is necessary for the map creation
such as the robot’s current position/orientation. It also sets the robot’s head behavior
node in a specific record mode and receives a ROS message from it, if the head-
mounted camera reaches a so far uncovered perspective. Beside the image topic, it
also subscribes to the camera_info topic to get the camera calibration. This whole
information is passed into the Visual Compass implementation. If the recording is
finished, the feature map is dumped in a pickle file and the user gets notified.

The Visual Compass startup node runs the Visual Compass during the game. It
subscribes to the ROS topics for the camera image and calibration. In addition, it
loads the feature map from a pickle file and passes everything to the Visual Compass
implementation.

Worker The layer underneath the handler layer is called the worker layer as seen
in Figure 2. This is where the different implementations of the Visual Compass are
located. Each of these implementations implements the worker interface. The worker
interface describes methods to get/set/append the feature map, to run the compass
on a specific image or to set a configuration dictionary.

The most used implementation is the Multiple worker. It calculates an orientation
of the robot on the field plane in radians, in contrast to the Binary worker that
only determines which field side the robot is facing. So the Binary worker is only
able to output the values {0,7} with a confidence value. Due to improvements in the
development process of the Multiple worker, the functionality of the Binary worker
became a subset of the Multiple worker. Consequently, we focused on improving the
Multiple worker and the Binary worker got deprecated.

Matcher The matcher layer in Figure 2 consist of classes for the different feature
detection algorithms. Every class implements the matcher interface. The matcher
interface defines functions for the image feature detection, the matching of feature
descriptors or feature algorithm-specific debug image generation. Matcher implemen-
tations exist for the SIFT, ORB and AKAZE algorithms.

4 Evaluation

written by Patrick Baumann

This Section aims to quantify the quality of the Visual Compass. First, we will give
a detailed look into the precision of the compass. In Section 4.4, we will focus on the
runtime performance of the different variances of the compass. As stated in Section 3,
the Visual Compass uses images taken before a game in a training phase to create
a map of its environment. It then uses those features to recognize features from this
map in the images taken during the game. For precision evaluation purposes, we
decided to take unstitched panoramic images from the playing field of the RoboCup
German Open in May 2019 in Magdeburg. The images were taken on a grid with
1m density from all over the field, resulting in 70 sets of images (the field has a size
of 6mx9m) with 16 images per location.
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For the evaluation, a central set of 16 images is taken as the source for constructing
the feature map. Then, the Visual Compass is run against all the images taken from dif-
ferent positions all over the field. The exact viewing angles of the test images are known,
thus, it is possible to quantify the error the compass makes on processing each image.

The compass has two output values: the angle in which the robot is suppos-
edly looking and the confidence value to quantify the trust in the calculated angle
(Section 3.2). During the evaluation process, we specified threshold values for both
parameters, resulting in a 2 x 2-Matrix of outcomes for each picture in the evaluation
process. This confusion matriz (see Figure 4) contains

— true positives: accurate angle values with high confidence ratings,
— true negatives: inaccurate angles with low confidence ratings,

— false negatives: accurate angles with low confidence ratings and
— false positives: inaccurate angles with high confidence ratings.

In the following sections, we take a look at the general precision performance,
on some specific issues that emerged during the evaluation process and discuss its
shortcomings. Finally, we evaluate the runtime performance of the compass.

4.1 General precision

The ability of the Visual Compass to perform well is not depending on the parameter
set that is used. This general performance can be visualized in a Receiver Operating
Characteristic (ROC). The ROC’s idea is that “a classification model can be tuned
by setting an appropriate threshold value to operate at a desired [... false positive
rate]” [10, p. 130]. The more a ROC curve fits in the top left corner, thus having
many true positives while keeping the false positives low, the better is the overall
performance of that receiver.

Comparing the three characteristics in Figure 3 shows the strengths of the different
algorithms: AKAZE keeps the false positive rate at 0 for the longest, but struggles
to get the true positive rate up, even when tolerating some false positives. SIFT and
ORB for the most part develop in parallel. Since SIF'T maximizes the area under
the curve, it has the best overall performance of the three.

During a game situation, the false positives — being sure to look in one direction
while actually looking in another direction — would trigger a disadvantageous action
and therefore come at the highest cost. A low confidence rating would just result in
a need for evaluating pictures by looking in other directions with higher confidence.
Because of that, we focused on keeping the false positive rate low when deciding for
a parameter set to work with. Figure 4 shows the confidence matrix for a confidence
threshold of 0.5.

From all 1120 images evaluated from the different positions on the field, the SIFT
algorithm manages to retrieve the correct angle of 639 images within a 90° window (45°
left and right of the correct angle of the image) with high confidence. With this configu-
ration, it is possible to keep the false positives at only 9 images (0.8%). Regardless of the
confidence, about 18% of the analyzed images resulted in a wrong angle output. This
shows, that (1) the Visual Compass has a good ability to find the right direction and
(2) that the confidence value, filtering out the wrong values, actually works as intended.
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Fig. 3. Receiver Operating Characteristic (ROC) of the three algorithms SIFT, AKAZE and
ORB. Since SIFT maximizes the area under the curve, it has the best trade-off performance
when maximizing the true positives while minimizing the false positives.

Like the ROC curve, the confusion matrix shows that the SIFT algorithm has the
best overall performance of the three. While ORB appears to have bigger problems
with retrieving the correct angles, it is different with AKAZE: The high count of
false negatives point to a low confidence value in general.

4.2 Detailed view: Strengths and weaknesses of the Visual Compass

Until now, the analysis focused on the overall precision of the compass. In this Section,
special issues of the Visual Compass will be addressed which emerged during the
evaluation process. We focus on the SIFT algorithm, as it obtains the best results.
In the general precision evaluation, we found 9 false positives, three of which
are shown in Figure 4 (the circled arrows). The correct direction is north-west, the
three false positives, however, are pointing north, north-east. All can be found in the
north-eastern corner of the field. Presumably, a perspective distortion is the reason
for the errors. The feature map was created by pictures taken from the center of the
field. From a central position, the recognized perimeter advertising board is found
in a north, north-eastern direction, so this angle gets associated with it in the feature
map. When the algorithm recognizes the ads during the evaluation, it outputs that
(north, north-east), even though the actual direction in which the picture is pointing
is north-west. So actually, the compass’ feature assignment is correct, therefore the
high confidence makes perfect sense. This behavior can be determined for all 9 false
positives of the SIF'T algorithm with a confidence threshold of 0.5. This problem would
become smaller if the compass used features that are further away from the field.
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Fig. 4. Confusion matrix of the compass using different algorithms with confidence threshold
of 0.5.

Figure 5 hints at another interesting point: The confidences in the left goal area
are very low. Manual evaluation of the corresponding images shows that those images
were taken looking into the goal net. The feature retrieval algorithm finds many
features in the edges and nodes of the net, but is presumably not able to retrieve
those in the feature map because of the far distance from the center of the field.
Additionally, the same features can be found symmetrically in the right goal, resulting
in a low confidence again.

4.3 Restrictions of the precision evaluation and future analyses

Our evaluation process has some restrictions. The data was taken under idealized
circumstances. During a game, images are blurred due to the movement of the
camera. As the robot is moving, shooting and presumably falling during a game,
the images are shot with totally different views, not just from upright. Even though
the background changed during the recording process of the evaluation sets, the
background in the hall might change more during the game. Since those new features
are not recognizable in the feature map, we expect a lower confidence while the
directions remain correct — this must be subject to future evaluation. Finally, future
research should also investigate further into the low confidences and angles to confirm
or reject the hypotheses presented in Section 4.2.



12 P. Baumann, J. Gutsche, B. Ostendorf, F. Vahl

LRI S O O O 8 0.0°
L T U N U N 4
e VD NNNNANN 0
SN YN NYNN
om 4 - - X \\\\\\ - 90.0°
- X v s X\ \\~
Om-<‘\\\\\\\\ 135.0°

180.0°

Fig. 5. Evaluation of 70 images: The compass learns its surroundings through one panoramic
image from the center position, it then tries to find the direction in which the other images
are pointing. Each position on the field is evaluated for itself. The black bars on the left and
right symbolize the goals. Arrow directions show the calculated direction, arrow lengths show
the confidence. Arrow colors show the correctness of the calculated direction, compared to
the correct direction indicated by the arrow above the colorbar. Arrows with circles indicate
false positives.

In summary, the precision evaluation shows that the compass is functioning, even
though it has its limitations. In most cases, these limitations result in low confidences,
not wrong angle associations with high confidences. The Visual Compass can thus
be considered stable and working.

4.4 Timing evaluation
written by Florian Vahl

To evaluate the performance of the different feature detection algorithms, represented
by the matchers as described in Section 3.3, our setup consisted of an Intel® Core™
i7-4810MQ CPU @ 2.80GHz that runs the Visual Compass in a CPU only mode
via the dummy handler on an image set of 1000 images. The dummy handler is used
for this experiment, because we want the different approaches to operate without
any ROS overhead.

The measured absolute performance isn’t comparable to the in-game performance
of the Visual Compass. For repeatability reasons, the Visual Compass runs on a
clean system without any additional load. Also, the Visual Compass is able to run
on many different devices. E.g. in the Wolfgang robot from Hamburg Bit-Bots it
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could be deployed on an Intel NUC, an ODroid XU4 or an NVidia Jetson TX2 as
described in the Team Description Paper [3]. These are the main reasons why this

timing evaluation focuses mainly on the comparison of the different feature detection
algorithms instead of in-game run-time values.

ORB -|
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Selected Matcher

SIFT -

30 40 50 60 70 80
Image Processing Rate (Hz)
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=
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Fig. 6. Processing rates for the ORB, AKAZE and SIFT feature detection algorithms.

As seen in Figure 6 the ORB algorithm reaches a processing rate of 76.9 Hz
and performs the best by outperforming the AKAZE algorithm by a factor of 3.6.
The probabilistic approach of ORB also performs 9.7 times faster than the SIFT
algorithm, which had the worst run-time.

Considering the previous evaluation of the compass precision in Section 4.1, the
accuracy benefit of SIFT has to be compared to the run-time benefit of ORB, which
only performed slightly worse precision wise. This opens more possibilities for future
evaluation.

5 Conclusion and Future Work
written by Benedikt Ostendorf

5.1 Future Work

As seen in the evaluation (Section 4) there is still room for improvement with our
Visual Compass. The Visual Compass spends most time extracting features from
camera images. Because of that, the runtime of our compass cannot be improved
significantly, unless one would choose to improve an existing or use a faster feature
extraction algorithm.

What can be improved upon is the quality of our prediction. One such improve-
ment involves the feature to angle mapping that is done in the compass. In order
to predict a direction, the compass uses the angle of the features introduced in the
initialization stage. If the compass encounters the same feature in the matching stage,
its angle can be looked up from our feature map.

But there exists another angle that our implementation ignores. The features that
are extracted from the image in the prediction stage can be to the left or right of
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the image as well. Dependent on the field of view of the robot’s camera there could
be a discrepancy of up to 40 degrees between the angle we look up in the map and
the angle actually present.

Taking this offset into account should improve the quality of our prediction. The
improvement in confidence can be calculated for ideal conditions. Assume all angles
in the map and all extracted features are correct, and features appear equally likely
at all offsets. The algorithm to calculate the confidence converts angles into vectors of
unit length and sums them up. In our implementation, mapping these vectors would
draw a semicircle dependent on the camera field of view, because all feature offsets
are equally likely. With the correction of the feature offset and under ideal conditions,
all vectors point in the same direction.

Let f be the maximum offset of a feature. Assuming infinite features and thus using
integration instead of summation, the magnitude of the result in our implementation is

f
/ cos(z)dx=2-sin(f) (2)

-f

instead of simply
!
/ ldz=2f 3)
-f

with angle correction. Converting into a percentage gives

f
() @
Inserting appropriate values tells us that under ideal conditions and with a field of
view of 90° we can get a 10% improvement.

Under normal circumstances, it is not the case that features are detected every-
where. In the case of a feature imbalance the improvement would be even better,
because the predicted direction would be less sensitive to the location of found features.

Another thing that can lead to problems with correct compass predictions is the
potential absence of features. Should something about the field change or if the map
isn’t initialized correctly, the compass might make a wrong decision based on a few
wrong features, or don’t return a useful result at all.

To make sure that there are features in the map to match against, the map could
be updated in the game. If a prediction for a picture is requested and the compass is
confident about its prediction it can add new features from the current input to the
map. Such a procedure could make the compass robust against changes that could hap-
pen during the game. It also could decrease the accuracy of the compass by repeatedly
making wrong predictions after they have been added to the compasses feature map.

Whether or not continuously updating the map is helpful to the performance of
the compass should be tested in practice. Even in the case that updating the feature
map of the compass introduces more errors, this procedure could be used in parallel to
the simple compass implementation. Should the normal compass return a uncertain
result the updated feature map could be used to improve the prediction quality.

The above discussed changes conclude the improvements to the quality of the
Visual Compass. As mentioned in Section 4 further evaluation of the compass can
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still be done. Real-time requirements and too few true positives may decrease the
prediction’s usefulness. Therefore it is still to be determined if the compass can
reproduce the results of the evaluation under real-world conditions.

5.2 Conclusion

At the beginning of the semester, we set out to partly solve the self-localization
problem for robots using only human-like sensory data. The goal was to produce a
Visual Compass that can be used in future matches of the Hamburg Bit-Bots Team.
Over the course of the semester, we looked at different existing approaches to draw
inspiration from. We looked at different feature extraction algorithms and build a
proof of concept binary compass. This early version was improved upon as described
in the previous sections, resulting in a Visual Compass that can work with multiple
reference images and various feature extraction backends.
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