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Abstract

In this thesis, an existing fully convolutional neural network architecture that was able
to detect one object class was extended for the detection of two classes. The neural
network was used for the detection of the ball and was extended to also be able to
detect goalposts in the RoboCup Soccer domain. Conventional methods were not able
to accurately detect goalposts. It is important to know the position of the goalposts
because this information can help in the self-localization of the robot. Additionally, it
helps ensuring the robot kicks inside of the goal instead of next to it. The results show
that the architecture can be expanded to output multiple heatmaps with a small trade-off
in detection accuracy. The impact on runtime performance is negligible.

Zusammenfassung

In dieser Arbeit wurde eine Architektur eines fully convolutional neural networks, das
vorher eine Klasse von Objekten erkennen konnte, erweitert für die Erkennung von
zwei Klassen. Das neuronale Netz wurde genutzt für die Erkennung des Balles und
wurde erweitert um außerdem Torpfosten finden zu können im Kontext des RoboCup
Soccers. Konventionelle Methoden konnten nicht ausreichend genau Torpfosten finden.
Es ist wichtig die Position der Torpfosten zu finden, weil diese Information helfen kann
in der Selbstlokalisierung des Roboters. Außerdem hilft es sicherzustellen, dass der
Roboter in das Tor trifft und nicht daneben schießt. Die Ergebnisse haben gezeigt,
dass die Architektur erweitert werden kann, um mehrere Heatmaps auszugeben, mit
einem geringen Einfluss auf die Erkennungsgenauigkeit. Der Einfluss auf die Laufzeit
ist vernachlässigbar.
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1. Introduction

Detecting goalposts is essential for the ability of a robot to play soccer. However, de-
tecting goalposts using conventional methods is not very accurate.
Sec. 1.1 explains why the detection of goalposts is important and why a fully convolu-
tional neural network will be used.
The goal of this thesis is explained in sec. 1.2.

1.1. Motivation

In recent years the improvements of deep learning have significantly helped the devel-
opment of artificial intelligence systems. New ideas and concepts have led to break-
throughs in the field. This coupled with the availability of significant amounts of data
has led to massive improvements. In the computer vision domain convolutional neural
networks have led to significant progress. These methods are already in use by the
Hamburg Bit-Bots to detect the ball on the field. The proposed methods in this thesis
are primarily developed for use in the systems of the RoboCup team Hamburg Bit-Bots.

However, in the RoboCup Soccer domain it is not only essential to find the ball, but
also being able to find goalposts on the field. Goalpost detection is important because
it helps the robot to self-localize. This is important because odometry is not accurate
enough for the robot to be localized on the field. By having an accurate self-localization,
the robot is better able to decide where to kick the ball to score a goal. This helps with
team play because the robots can communicate their position to the other robots. Based
on this information the robots could e.g. pass and thereby get past a defending robot.
Finding goalposts can also help decide in which direction the robot is currently looking.
In between the goalposts, a goalkeeper of the defending team is likely to be present.
Thus if two goalposts are detected and a robot of either team is also detected, the
direction of the robot can most likely be determined correctly. Also, lines are currently
detected in the Hamburg Bit-Bots vision pipeline by searching for white spots in the
image. If a goalpost is detected, it can be ruled out as a possible line. By detecting
the goalposts precisely the robot can decide to kick in a direction further away from the
middle of the goal. If a goalkeeper has been detected, the corner in the goal further
away from the goalkeeper can be chosen to kick at, because the goalkeeper is less
likely to reach the ball in time.

The rules of RoboCup Soccer heavily restrict the allowed sensors [1] to ones that are
human-like. Therefore, only the camera sensor could meaningfully help in finding the
goalposts. Thus computer vision algorithms have to be relied upon. An example of a
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1. Introduction

difficult situation is shown in fig. 1.1. This situation is very hard to solve with conven-
tional methods. In this example, the neural network also detected a false positive. In
other examples, the neural network presented in sec. 4.7 did however not detect false
positives where a conventional algorithm would likely not be able to discern a true pos-
itive from a false positive. Fully Convolutional Neural Networks (FCNNs) have already
been shown to work better in specific environments than neural networks which were
state of the art before their introduction [LSD15].

1.2. Thesis Goal

The goal of the thesis was to evaluate if the architecture proposed by Speck et al.
[SBB18] is able to also detect goalposts additionally to the ball without significantly
increasing the runtime.

The network by Speck et al. only detected balls, however, this is not enough for the
domain of RoboCup Soccer. The detection for the ball works reliably in real time on the
limited hardware available on a mobile humanoid robot. That is why it was chosen as
the one to evaluate.

The trained neural network should be able to reliably detect the goalposts on one
output channel and the ball on another output channel while not sacrificing significant
computation time.

1.3. Thesis Outline

The fundamentals that are necessary to understand the following sections are given in
chapter 2.
In chapter 3 related approaches are explained. First, the general approaches in com-
puter vision using neural networks and then the approaches for object detection in the
RoboCup Soccer domain.
The experiments which were conducted in this thesis and why the experiments were
done this way is explained in chapter 4.
How well the approaches worked is evaluated in chapter 5.
The methods applied in this thesis are discussed in chapter 6.
The thesis is concluded and possible future work is discussed in chapter 7.

2



1.3. Thesis Outline

Figure 1.1.: Input image from [2]. This image from the dataset shows a difficult situation
that happens in the RoboCup domain. The top left image shows the input
to the neural network. The top right shows the output of the fully convo-
lutional neural network, a heatmap. To the right of the image is a scale,
because the scale is normalized. In this example, the highest activation is
0.6, but the highest activation is still white. The bottom left image shows
the ground truth that was manually labeled which was cropped to learn only
the bottom part of the label as explained in sec. 4.7. On the bottom right
is the output of the neural network overlaid on the input image. The floor
of the exhibition hall has a white spot which is vertical and thus looks very
similar to a goalpost. The white spot is in the image space right above the
green grass which does not allow distinguishing from a goalpost by requir-
ing a field boundary right below it (either the network learning a goalpost
is on grass or post-processing to require the goalpost to intersect with the
field boundary).

3





2. Fundamentals

In this chapter, the fundamentals needed for the following chapters are presented.
Sec. 2.1 introduces the RoboCup and presents the leagues of RoboCup Soccer.
Neural Networks are explained in sec. 2.2. Convolutional neural networks, a specific
kind of neural network often used in computer vision are explained in 2.3. Fully con-
volutional neural networks, convolutional neural networks with no fully connected layer,
are explained in 2.3.1.
The available computational platform on the mobile robots used by the Hamburg Bit-
Bots and which parts of the robot are available for computer vision are described in
sec. 2.4.
The ImageTagger which was the source of the training data is explained in sec. 2.5.
Since the computer vision on the robots is only able to find objects in the image space
and not the relative position to the robot, the transformer is used. The transformer is
explained in sec. 2.6.

2.1. RoboCup

RoboCup is an initiative which was founded in 1996 with the goal of promoting the
development of artificial intelligence. The declared goal is to beat the champions of the
human soccer world championship in 2050 with humanoid robots [3].

Multiple leagues have been founded in the RoboCup soccer domain. A Small Size
League [4] with non humanoid robots, which have a camera on top of the playing field
and a standardized vision system, which is computed on computers not on the field
and then wirelessly communicated to the robots. The behavior of the robots is also not
computed on the robots themselves, but from outside of the field of play. The main goal
of this league is the coordination of multiple agents on the field while being in a highly
dynamic environment.

The Middle Size League [5] requires the robots to have their own sensors on board.
The robots also do not have to be humanoid. The computation has to be done on the
robot and the ball in play is a regular FIFA soccer ball. The teams are free to design
their own hardware with the only limit being a maximum height and weight. The league
focuses on the hardware design of the robots, controlling these robots and also the
coordination of multiple robots.

The Standard Platform League [6] requires all teams to use the same robot. Thus the
teams are not able to gain any advantage via a better hardware platform. The software
is the important part of this league and is significantly easier to compare from team to
team, while still working with a real robot.
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2. Fundamentals

Figure 2.1.: Image used with permission by the owner. In this image the blue robot
from the WF Wolves plays against the red robot of the Hamburg Bit-Bots.
The game is played on a football pitch of 9 m×6 m size.

Another league is the RoboCup Soccer Humanoid league [7]. This league is the one
the fully convolutional neural network will be applied to since the Hamburg Bit-Bots play
in the Humanoid league. There are different leagues in the Humanoid league with the
main difference being the allowed height and weight of the robot.

The rules in this league [1] specify a field size of 9 by 6 meters. This is the distance
the objects should optimally be detectable in. The ball as defined by the rules has
to be "spherical[,] made of leather or another suitable material [and] FIFA size 1 for
KidSize[...]"[1].

The Goal will be placed in the middle of the goal line (the 6-meter line of the field).
The distance between the two goalposts is 2.6 m, the lowest point of the crossbar is
1.8 m and the goalposts do not extend higher than the crossbar. The goalposts can be
"square, rectangular, round or elliptical in shape"[1] and have to have the same width
and depth which must "not exceed 12 cm"[1]. The color for the goalposts as well as the
crossbar is white.

2.2. Neural Networks

Artificial neural networks are networks made up of nodes that have been loosely in-
spired by how the human brain works. The goal hereby is not to copy the neural net-
works of a human but to use concepts that work well and apply them to different tasks.
An example of a neural network is visualized in 2.2.

One such task can be computer vision, e.g. detecting and classifying objects in an
image. An artificial neural network is made up of multiple layers [8]. The first layer is the
input layer, the layer that is fed the information available to be analyzed. The last layer is
the output layer which contains the output of the neural network. In between are layers,
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2.2. Neural Networks

Figure 2.2.: Image from [Kan11]. On the left are the inputs which are fed into the neural
network. Every input is connected to every node in the first hidden layer.
On the right there are two output nodes.

called hidden layers, as their results do not contain either the input or the output and are
thus usually not visible from outside the network. Nodes are connected to each other
and in the case of a fully connected neural network, each node is connected to each
node of the previous as well as the following layer. Each node has a weight attached to
each connection it has to a node in the following layer. This weight determines how the
value of the node influences the next node.

The activation function is also relevant for how the value of the node is propagated to
the next layer. An activation function changes the value which is output from a node by
for example returning 1 for every value larger than 0.5 (binary step). More sophisticated
activation functions also exist. For example, the ReLU function which is the one that
was used by Speck et al. [SBB18] and also the one the networks proposed in this thesis
use. The ReLU function [GBB11] has as output zero for every value below zero and the
input value for every value larger than zero. An activation function is useful because a
nonlinear function makes it possible for a neural network to solve nontrivial problems
while requiring fewer nodes [9].

Dropout [SHK+14] is a method that randomly selects nodes as well as connections
of nodes that are not used in the training of a neural network. Different nodes and
connections are chosen for different training steps. This method reduces the problem
of overfitting by preventing nodes from relying on the output of another node. This allows
the network to e.g. in the computer vision context to learn a more general representation
of the object rather than relying on the cases represented in the training set.

To improve the output of the neural network, methods such as Adam optimizer [KB14]
can be used. It is used in the training of the neural networks in this thesis. The Adam
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2. Fundamentals

optimizer is the method of how the weights are changed in the training. First, a forward
pass is made through the network which means giving the neural network an input
and the neural network will compute some output. This output is the prediction of the
neural network. During training, the ground truth is known and the weights of the neural
network can be changed to estimate the ground truth better. This is done by calculating
the gradient of the influence of the weights on the output and changing the weights
accordingly.

For the calculation of how different the ground truth and the output of the neural
network is, a loss is calculated. The loss calculation for the proposed neural networks
is based on the squared difference between the ground truth and the output of the
neural network.

Overfitting means fitting the parameters too much to the specific training data[Kan11].
This leads to a model that can accurately predict the output for the training data but
becomes inaccurate for data that was not included in the training set.

To have less overfitting the training data can be split into training and test data sets
[Kan11]. The training data set is used to learn to estimate the ground truth. The neural
network also predicts the output for the test data set, but the calculated error rate is not
used to optimize the weights of the neural network. Instead, the test data can be used
to see how well the network is able to predict previously unseen data. If the calculated
error for the test set starts to increase instead of decreasing, the training should stop to
not decrease the ability of the network to predict correctly on previously unseen data.

2.3. Convolutional Neural Networks

This section is based on [GBC16]
Convolutional neural networks are used to process data which is grid-like. An image

is a 2-dimensional grid with, in the case of RGB, 3 channels. A convolutional neural
network is a neural network that has at least one convolutional layer.

A convolution is an operation that is applied to two functions that are calculated with
real numbers. In the case of convolutional neural networks, one of these functions is the
input while the other function is a kernel. The output of this calculation can be referred
to as a feature map. The input is a multidimensional array of color values, the kernel is
a multidimensional array of parameters that are changed by the learning algorithm.

Fig. 2.3 shows how a kernel applied to the input looks like with an example. Unlike
fully connected layers a convolutional layer does not have a matrix defining the inter-
action for every value of the input and the output. The convolution is usually smaller
than the input, which allows reusing the same kernel to detect the same features in
different positions of the image. This is useful because e.g. lines can be detected this
way using fewer parameters since the same kernel is applied to all parts of the image.
This reduces the memory required for storing the network and also means the neural
network requires fewer operations. This is called parameter sharing.

Convolutional layers are equivariant. This means if the input to the layer changes,
the output to the layer will change in the same way. This is a useful property because

8



2.3. Convolutional Neural Networks

Figure 2.3.: Image from [GBC16]. In the top left the values a, b, e and f are multiplied
with the values from the kernel. The values are added and produce one
output value. This is repeated for the input positions for all possible kernel
positions of the kernel being completely in the image.

it means the kernels can be used even if the input image size changes, because if the
input changes in size the kernel can either be applied more or less often to the new
input. This will create a different output, but the detection of the feature is not different,
because the kernel is applied in the same way as to a different sized input. This also
means the same filters can be used for a different context. For example, the first layer
could be used to detect edges and the following filters can use the property of the
detected edges.

Pooling is a function that takes multiple input values and returns only one. The max
pooling function takes a rectangular region of the input and returns the maximum value
of the input. This can be seen as a statistical summary of the region. This leads to
invariance to translation of the input, because the feature can still be detected even
though the exact position is not known due to the loss of accuracy by the pooling.
Pooling can be used to reduce the amount of input parameters if e.g. the following layer
requires a specific amount of parameters like a fully connected layer. With pooling
and due to the equivariance property of the convolutional layers a convolutional neural
network is able to handle different sized input images.

A stride can be used to skip over some possible positions of the kernel. In fig. 2.3 a
stride of 1 is used, so the kernel is applied to the possible positions being completely
inside the image. A stride of 2 would mean for this example after applying the kernel to
the input values a, b, e and f the kernel would not be applied to b, c, f, and g, but rather
would next be applied to c, d, g, and h.

It is possible to add padding to the input to make it wider or higher. This can be
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2. Fundamentals

Figure 2.4.: Image from [SBB18]. At the top are the input images to the fully convolu-
tional neural network. The bottom shows the output of the FCNN with high
values at the positions where the network detected the ball. The images
in the middle are the input images and the output heatmap laid on top of
each other, showing the networks accurate detection of the ball.

for example a row of zeros, in which case it would be called zero padding. If this is
not used, the output width will be smaller by one pixel less than the width of the filter.
Without padding either the spatial extent of the network gets significantly smaller every
layer or very small filters have to be used.

2.3.1. Fully Convolutional Neural Networks

This section is based on [LSD15]
Fully convolutional neural networks (FCNNs) are able to make pixelwise predictions.

This means the output of an FCNN will not only detect which class is in the image or
a bounding box encompassing the object, but a pixel-precise heatmap having values
for each pixel for how likely it is for that pixel to be part of a specific class. This means
an FCNN can not only do classification but also pixel-wise segmentation of the image.
An example of this can be seen in fig. 2.4. This is accomplished completely inside
of the neural network without the need for pre- or postprocessing. The FCNNs keep
the property of convolutional neural networks of being translation invariant. They only
rely on relative spatial coordinates. Due to how convolutional layers work, an FCNN is
able to operate on input of any size and will have an output of corresponding spatial
dimensions.

The fully connected layer included in most convolutional neural networks can be
viewed as being a kernel which covers the entire input region of the previous layer.
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2.4. Computational Platform

If the fully connected layer is replaced with a kernel of the size of the input, the network
will be an FCNN which will generate a heatmap corresponding to classes. If this method
is applied to AlexNet [KSH12] this will lead to the network requiring a computation time
of 5 times less than the amount of the original network.

Pooling is used to downsample the image like it is used in convolutional neural net-
works. In FCNNs there is also upsampling. This is done via a backwards convolution,
also called deconvolution, which is basically just a reverse of the forwards and back-
wards pass of the convolution. This is a process that can be learned by the neural
network.

To address the lost information by pooling and using a bigger stride, skip layers can
be used which combine later layers with information from earlier layers to make use
of previously available information in the image [RFB15]. This information helps the
deconvolution process to then generate a more precise segmentation of the input.

By using a large number of feature maps in the upsampling process the network is
able to provide context information to the higher resolution layers [RFB15]. This leads
to a network that is almost symmetrical for both the downsampling process as well as
the upsampling process.

The downsampling process part of the architecture can often look like a regular con-
volutional network [RFB15].

2.4. Computational Platform

The Wolfgang Platform used by the Hamburg Bit-Bots is a robot with 20 degrees of
freedom [BBE+19]. The camera used is a "high-definition USB Webcam" [10]. The
rules allow the usage of two cameras which could be used for stereoscopic vision,
however, no team makes use of this, because to the best of my knowledge the problem
is the cameras have to be calibrated very precisely about the position of the other
camera. In the RoboCup domain, robots will regularly fall, which leads to the cameras
being not at the exact position they were calibrated in. Since a very small error in
calibration can lead to a significant difference in the calculated relative position of the
detected object, this approach is not used.

The robot has as computing units available an Intel NUC, an Nvidia Jetson TX2,
and an Odroid XU-4 [BBE+19]. Of these, the Nvidia Jetson TX2 is used for the vision
part of the processing. The Nvidia Jetson TX2 provides a 256-core NVIDIA PascalTM

GPU [11], a Dual-Core NVIDIA Denver 2 64-Bit CPU [and] Quad-Core ARM R©Cortex R©-
A57 MPCore [11] with 8GB 128-bit LPDDR4 Memory [11].

2.5. ImageTagger

For the training of the neural networks images and labels containing the position of
the goalpost as well as the ball are required. The ImageTagger [FBH18] provides an
open source platform for labeling images. It is collaborative and multiple teams in the
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Figure 2.5.: Image from [Gü19]. The transformation calculation visualized. The projec-
tion plane is the image and a ray is calculated through the position in the
image space of the object to find the intersection of the ray and the ground.

RoboCup have labeled images and uploaded new images from e.g. the perspective of
their robots. The ImageTagger provided by the Hamburg Bit-Bots has 290.000 images
of the RoboCup domain publicly available and 30000 labels of goalposts [2]. The labels
for the goalposts were created by humans defining four points which together outline
the goalpost. The balls were labeled with a bounding box encompassing the ball. Tens
of thousands of labels have been created in the context of this bachelor thesis by the
Hamburg Bit-Bots team.

The image collections are split into image sets. This way the images can be sorted
by context of where the images were taken or for example which camera was used. It
also makes it easy in the training process to only include some of the image sets.

The ImageTagger instance of the Hamburg Bit-Bots [2] is the source of the training
and test sets used in this thesis.

2.6. Transformer

The objects are found in the image space and no depth information is available as
explained in sec. 2.4. To interact with its environment the robot needs to know the
relative position of the objects to it. This calculation is the task of the transformer. The
transformation process is visualized in fig. 2.5. The projection plane is the image. A
ray is calculated going through the projection plane to the ground. The ray has to be
calculated because the rules prohibit active sensors. This ray starts from the position of
the camera which is calculated from all the joint angles from the robots. This requires
precise calibration of all the joints. From the distance, the ray takes from the position of
the camera, the relative position of the object is calculated.
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Sec. 3.1 gives an overview of general approaches for computer vision, specifically com-
puter vision with neural networks

The approaches for the task of detecting goalposts and other objects on the field in
the RoboCup Soccer domain are explained in sec. 3.2.

3.1. General Approaches

There are many approaches available for object detection in images. The more con-
ventional approaches consist of handcrafted filters which are very time consuming to
develop. More recent approaches favor deep neural networks, more specifically con-
volutional neural networks. Convolutional neural networks have become very popular
after AlexNet [KSH12] was very successful in the ImageNet challenge in 2012. It won
the competition with only a 15% error rate on their top 5 guesses for which object is in
the image. The second place had an error rate of 25%.

The VGG Net [SZ14] showed that increasing depth by using smaller filters improves
the results of the network. The VGG Net used smaller 3x3 filters unlike e.g. AlexNet
which used larger filters but fewer layers.

In medicine, the U-Net [RFB15] has been very successfully used for image segmen-
tation. In this case not only image classification is needed, which the AlexNet already
performed well for the ImageNet challenge, but also the image has to be segmented
into several object regions. This means the location of different objects has to be de-
tected. The Task given is an image of cells. The cells have to be segmented in the
image and then they have to be classified. Another challenge in this domain is the
very low amount of training images. Thus data augmentation was heavily used for the
training of the U-Net.

YOLO [RDGF16] puts a grid of predefined size on the image. Then the architecture is
split to fulfill two tasks. One of these tasks is to predict where an object is in the image.
This part does not classify what the bounding box contains, it only finds most probable
positions for objects. The classification is done in the other task that is run simultane-
ously. Each grid element is classified as one object. The bounding boxes passing a
confidence threshold are then evaluated and a class is chosen for each bounding box.
This approach is faster than competing approaches [RF17] while maintaining very high
accuracy. Additionally, a model called Tiny YOLO has been published [12] which makes
the trade-off of accuracy for speed of detection. This architecture would be the most
suitable to achieve real-time detection on the limited hardware available on the robot.
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3.2. Approaches in RoboCup

Some teams use comparably basic algorithms for computer vision. The team Electric
Sheep uses color for candidate detection. Then the best ball candidate is chosen based
on "roundness, colour profile, distance, size and distance from previously identified
location" [BCBK+19].

The current approach for goalpost detection of the Hamburg Bit-Bots is based on
the detection of the field boundary [FBG+19]. The field boundary is the edge of the
field. For the detection of the field boundary, a lookup table will be created containing
every possible RGB value. The color values which are part of the field are defined by
a human prior to the game by selecting areas of green pixels that are part of the field.
In the detection of the field boundary, the topmost pixels which have previously been
defined by the human as green are searched in a column from e.g. top to bottom. This
is done for a predefined value of columns. If something is in the way of the robot it
will block the robot’s line of sight to the edge of the field. This will leave a dent in the
detected field boundary. The area above the dent is analyzed for color and if the amount
of e.g. white reaches a threshold the object is assumed to be a goalpost. This approach
is not very accurate and only accomplishes a mean Jaccard-Index of 0.183 [FBG+19].

The team EagleBots.MX uses Haar-like features with a cascade classifier for object
detection [LVMR19].

Other teams use YOLO [RDGF16] for detecting multiple objects including ball and
goalposts [RAS+17, HHM+19]. Rudiawan et al. [RAS+17] show the method is success-
ful in detecting balls and goalposts in the RoboCup Soccer domain. For this method,
only 4000 images were used for the ball and goalposts each. The used Jetson TX1 is
able to detect the objects with 45 frames per second. However, by using YOLO, there
is a trade-off as explained in sec. 4.2.

Another approach in the RoboCup Soccer league is to use Fully Convolutional Neural
Networks. One such approach is presented in [vDS18], where a new architecture was
developed to first find balls and later find goalposts and balls in the same network. To
find goalposts as well as balls a new channel was added in the last decoding layer.
For the goalposts, only the bottom part of the goalpost was used for the learning. The
bottom part of the goalpost means, in this case, a circle with a 20-pixel radius where
the goalpost touches the ground. Adding goalposts to the approach only lead to a small
decline in accuracy of detecting balls and the computation time needed was also not
significantly increased. This approach is similar to the one that is presented by this
bachelor thesis, as it also uses a fully convolutional neural network to detect balls and
goalposts. However, the architecture used by van Dijk et al. is a different one than the
one that is presented in this thesis.

Another method employed in the RoboCup Soccer domain is the one presented for
the robot Sweaty [SSW+17]. The neural network is able to detect the ball, opponents,
goalposts as well as field features (e.g. lines). This architecture takes about 11 ms
(meaning about 91 frames per second) to process an image on the Sweaty robot while
maintaining high accuracy. 2150 images were used for the training of the network as
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well as data augmentation on these images. The network was trained to learn the center
of the object. Using dropout as part of the architecture led to a worse recall and a higher
false detection rate. This architecture is able to detect most of the relevant objects on
the field of the RoboCup Soccer domain while being accurate and fast. However, the
approach also uses a GeForce-GTX-760 GPU on the robot, which is not feasible to use
in a humanoid kid size robot and thus not applicable for this thesis.

Team Rhoban who won the 2018 world cup in the humanoid kid size league uses
a classification approach for object detection [AGH+19]. For this approach regions of
interest for the ball and goalposts on the image are detected in the image, by using
the current state of the robot as well as “a kernel convolution on an Integral Image
filter” [AGH+19]. After deciding on the regions of interest, they are classified by a
convolutional neural network. With this approach, Rhoban is able to achieve about 97%
accuracy for both balls and goalposts. This approach uses only a classifier and relies
on a good region of interest selection. The approach of classifying regions of interest
also means the regions might be too large and viable candidates could be filtered out
before the convolutional neural network could classify them. To be able to get more
precise detections of the objects, an approach that does not only classify regions of
interests is preferable. As explained in sec. 4.2 an approach using a bounding box is
not preferable for the detection.

The approach presented in [GHSG18] proposes a convolutional neural network to
classify patches. It uses pretrained networks e.g. AlexNet [KSH12] which are then
being retrained with images from the RoboCup domain. The patches are 50x50 pixels
in size and chosen by generating binary images based on if the pixels are green (for
the field) or white (for the ball). If one patch has more than 30 detected white pixels it is
chosen to be a candidate for the ball. For the training, all patches are used, while during
detection only the ball candidate patches are evaluated. A region of interest approach
which generates bounding boxes is not preferable as explained in sec. 4.2.

The architecture presented by Speck et al. [SBB18] used 35327 images for training
and 2177 images for evaluation. It is only used to detect the ball. There are two archi-
tectures presented, model one is less resource intensive, but also less precise. Model
2 requires more hardware but also gives better results. It is based on the architecture
presented in [SSW+17] but uses a smaller input image of 150x200 size instead of the
originally used 512x640. In this network, a dropout rate of 0.5 is applied to all but the
first and last layer. Contrary to the results in [SSW+17] the dropout did improve the
results of the network. The network was also evaluated on a negative dataset. This
means no ball was in any of the pictures of the dataset. The network detected a ball
in their specific dataset in only 1.04% of the images, showing it is unlikely to produce
a false positive for their dataset. With a batch size of 1, the network took on average
0.049 seconds for the detection of the image. Since the network on the robot will work
with a batch size of 1, 20 frames per second can be detected. Model 1 is mostly shown
as a reference and for use with robots only having a CPU available for computation.

The proposed model 2 takes an input of 150×200 pixels with 3 channels. This is
put into filters of size 3×3 followed by a batch normalization and max pool layers of
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2×2 size. Additionally, some of the filters are used in later concat layers to have more
information available of the original image which allows the network to use the original
information of the image to generate a pixel-precise detection. The output is a heatmap
of size 150×200 with one channel. It is visualized in fig. 4.4 on page 23.

Since the approach of the proposed model 2 has been shown to work well on the
robots of the Hamburg Bit-Bots the approach in this thesis will build on the results of
[SBB18].
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This chapter explains which decisions were made in the experiments for this thesis.
In sec. 4.1 the format to download the labels of the data from the ImageTagger is pre-
sented.
Sec. 4.2 explains why an FCNN is advantageous to use over other approaches such as
YOLO.
How the network was trained is explained in sec. 4.3.
An explanation of how the humans labeled the data with the position of the goalpost is
given in sec. 4.4. The decision to use images where the object has been labeled as not
in the image is explained in 4.5.
Using the architecture shown in fig. 4.4 a neural network is trained with a single output
channel and with the full goalpost label as the ground truth. This is explained in sec. 4.6.
For using the same architecture but only learning the bottom part of the goalpost label
an experiment is made in sec. 4.7.
An explanation of why using two output channels in one architecture instead of using
two separate neural networks is given in sec. 4.8
The approach of learning the bottom part of the goalpost with two output channels of
the neural network is explained in sec. 4.9. For this and the following experiment the
architecture visualized in fig. 4.10 is used.
Sec. 4.10 shows how the approach of using two output layer for the neural network
while training with the full goalpost label was done.

4.1. ImageTagger Export Format

The framework developed by Speck et al. [SBB18] previously used a custom export for-
mat. The format was then parsed and saved in a Python dictionary. This method does
not allow for easy extendability since every change in the export format will also have
to be changed in the parser. One such change could be also including goalpost labels
in the output format. Since the export format from the ImageTagger is customizable,
a new export format was created. The new export format is in the YAML [13] format.
This format can be parsed by existing libraries such as PyYAML [14] and the result is
saved in a Python dictionary. This method allows for easier extendability since the pars-
ing method can stay the same. It also allows for easier collaboration since the YAML
format is a standardized data-serialization language and is thus more likely to also be
used by other teams that could provide images and labels.

The Python dictionary consists of two parts. The first part is simply the name of the
image set. The second part consists of the labels for the images. For each image, if a
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label for it exists, the content of the label is saved. It consists of the image name, which
is used as an identifier which is then paired with the filename of the image on the disk.
Additionally the width and the height of the image, which is used to calculate a scaling
factor, because the image in the neural network will be downscaled and thus the label
also has to be downscaled. The amount of labels for this image is also saved as well
as the label itself. The label is saved as a list of lists of x and y coordinates.

Listing 4.1: A section of an example of the generated YAML
set : b i t bo t s−montreal−game02
images :

montreal−game02_aa_000001 . png :
width : 800
he igh t : 600
annota t ions :

− { type : goalpost ,
inimage : t rue ,
vec to r :

[ [463 ,261] ,
[469 ,20 ] ,
[457 ,24 ] ,
[449 ,264] ,

] }
− { type : goalpost ,

inimage : t rue ,
vec to r :

[ [715 ,312] ,
[ 742 ,4 ] ,
[ 716 ,3 ] ,
[690 ,309] ,

] }
[ . . . ]

4.2. FCNN instead of YOLO

YOLO is a very popular approach in the RoboCup domain for detecting multiple classes
in an image. Also outside of the RoboCup domain, this approach is commonly used.
The advantage of using an FCNN over YOLO is the pixel precise detection of the object
in the image. This is significant for the transformation into relative space. A bounding
box that detects the goalpost inaccurately in the vertical dimension will lead to a signifi-
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cant error. This is a problem since the localization relies on the position of the goalpost
being accurately detected. If the view of the robot is tilted, which commonly happens
while walking, a bounding box approach will also lead to a bounding box that is signifi-
cantly bigger than the actual size of the goalpost. If the goalpost top part is e.g. in the
top left of the image, while the bottom part is in the bottom right, an accurate detection
would lead to a bounding box encompassing the entire image. This is however not a
precise detection of the goalpost since the goalpost could only be a thin bar that does
not fill the entire image. One possible solution for this would be to use the sensor data
from the IMU included in the robot. This could help to have an image which is less tilted
and would likely solve this problem.

The FCNN approach is able to make pixel precise detections which is preferable over
a bounding box because it is more accurate. Additionally, the approach presented in
[SBB18] has been shown to work on the platform used by the Hamburg Bit-Bots and
has shown good results for ball detection. The approach of [vDS18] has shown their
architecture is able to detect the ball as well as the goalpost by just adding another
output channel. It is likely the architecture of Speck et al. can be modified in a similar
way to be able to detect the ball as well as the goalpost.

4.3. Training

The training of the neural network was done on an Nvidia Titan X Pascal. The frame-
work was adopted and extended from the one used by Speck et al. in [SBB18] which
provides a parallel algorithm for the data loading process to use the resources of the
GPU as efficiently as possible. The training took about an hour. The training used
different image sets for the training process and testing purposes. No image of the
test set was included in the training set and thus an indication of if the neural network
started overfitting could be seen from if the loss on the test set was still falling or started
increasing again. The loss on the test set did not fall any lower anymore after about 15
epochs and started increasing instead, thus the training was stopped after 15 epochs
for most of the training experiments.

4.4. Labels

To start the supervised learning, labels of goalposts were needed. The goalpost was
defined for the labeling as from the bottom of the goalpost where it is connected to the
ground and up to the crossbar, but not including the crossbar. An example of this can
be seen in fig. 4.1.

It had to be decided if all goalposts in an image should be labeled as a goalpost or
if specific exceptions should be made. The problem with labeling all goalposts as such
would be, if multiple fields are close together and the robot is able to see more than
just the goalposts of its field. One example of this is seen in fig. 4.2. In this case, the
goalposts are not visibly attached to the ground. This is one main visible difference to
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Figure 4.1.: Image from [2], edited to make label more visible. An example of manually
labeled goalposts. The red outline encompasses the goalpost and will be
used as ground truth for the training of the neural network.

e.g. pillars which are also often visible in the RoboCup soccer domain. The pillars will
not be on the grass and thus with finding goalposts on the grass, goalposts on other
fields can be ruled out and also other objects like the pillars. Thus it was chosen to
not label goalposts on other fields where they are not visibly attached to the grass.
Another example is shown in fig. 4.3, in this example it is not possible to rule out the
goalposts on the other field by basing it on them being on grass. So for this case, it was
chosen to label the goalposts on the other field too. It is not easily possible to rule out
these goalposts as not relevant for the current field of play, just by the way they look.
Additional features have to be taken into consideration, e.g. the game logic of ignoring
anything where the field of play is interrupted from looking forward from the robot’s point
of view. This can easily be done in post-processing the output of the neural network.
The vision pipeline used by the Hamburg Bit-Bots already searches a field boundary to
not require image processing on parts of the image which are not relevant. If a small
threshold is applied to this boundary because goalposts will be in large part above the
boundary line, then the goalposts on other fields will be filtered out and the net possibly
also learns goalposts features of goalposts only seen from a larger distance.

4.5. Using Negative Data

In the existing framework images which were labeled with an object "not in image" were
skipped. This can be motivated because every image containing the object consists
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Figure 4.2.: One Image from the ImageTagger database [2] demonstrating goalposts
positioned on other fields. Two fields are visible including their goalposts.
This is a case in which it is difficult to determine which goalposts should
manually labeled.

Figure 4.3.: Image from the ImageTagger [2] showing multiple goalposts on multiple
fields. The field below each goalpost is also visible. Thus the decision to
label in this case cannot be distinguished by the bottom of the goalpost
being visible on the field.
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mostly of parts that are not part of the object and thus all of this negative data is in-
cluded in the training and can be used by the neural network to not have false positives.
However, the team of the Hamburg Bit-Bots had a problem with false positives detected
by the neural network for ball detection, because e.g. the arm of the robot was some-
times detected as a ball. Thus the decision was made to include negative data in the
training process. If the experiments showed to have too many cases of having false
negatives it could easily be changed back to not include negative data in the training
process.

4.6. One Channel - Full Goalpost Label

The first approach of training goalposts used the full label which has been created as
explained in sec. 4.4. The label contains the four coordinates of the label in the order
in which they were created in the ImageTagger. This means the ground truth masks
can be created by drawing an outline following the points given from the export from the
ImageTagger and then filling the content of this outline with the value of 1.0 for each
pixel inside of the label.

The architecture used for this experiment is the one proposed by Speck et al. [SBB18].
It is visualized in fig. 4.4.

This approach worked to find goalposts over a significant distance as shown in fig. 4.5.
The detection, in this case, was also over a large distance of more than half the field
and there were no significant activations in the output which means no false positives
were present in the output in this example.

The detection also worked for goalposts closer to the robot as shown in fig. 4.6. This
case is also made more difficult as the ball is right next to the goalpost which makes
the surrounding area of the goalpost look different than most images present in the
training set. This could explain why the activation is mostly present in the upper parts
of the visible goalpost and there is a significantly smaller activation in the lower parts
of the goalpost. However, this is a very important case for the robot as this situation is
one which will likely happen during a regular game where the ball is very close to the
goalpost. In this case, the robot should reliably find the goalpost to not kick the ball next
to the goal but inside of the goal.

In fig. 4.7 two examples of false positives detected by this network are visible. Pillars
like the one present in these two images are common in the RoboCup Soccer domain
because games are played in exhibition halls where such pillars are common. Thus this
is a significant problem. It is possible that the main feature the network learned was a
white vertical line in front of an indiscriminate background because the backgrounds of
the goalposts can be very different depending on e.g. the angle the goalpost is seen
from as well as people standing behind the goal or a different position of the exhibition
hall. Only a small part of the goalpost is connected to the field which will always look
very similar because the field consists of grass and the white lines the goalpost is
connected to.
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Figure 4.4.: The architecture for the neural network as proposed by Speck et al.
[SBB18]. This architecture only generates one heatmap for the
detection of one class. 23
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Figure 4.5.: Input image from [2]. This image shows two goalposts that have been
correctly detected by the neural network. The goalposts have both been
detected over the full length of the field and the detection is very accurate.
There is no relevant activation in the output image other than the two goal-
posts.

4.7. One Channel - Bottom Part

Following the possible explanation given in sec. 4.6 a new approach was developed.
The most relevant part of the goalpost for our case is the lowest point of the detected
goalpost as that is the part that will be transformed from the image space to the relative
space (see sec. 2.6 for details). Since detecting the full goalpost might lead to the prob-
lem of not properly detecting the bottom most part of the goalpost as seen in e.g. fig 4.6
this can lead to significant errors in the calculation of the position in relative space. If
only the bottom part is detected it is unlikely to detect a part of the goalpost which is not
on the ground, thus allowing for a more accurate calculation of the relative position.

Additionally, the work of van Dijk et al. [vDS18] showed their network not being able
to reliably detect the full goalpost. Instead, they label a circle with a radius of 20 pixels
at the position where the goalposts are on the field. This approach for labeling was
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Figure 4.6.: Input image from [2]. A goalpost could also be detected from a closer
distance which is a very important scenario in the RoboCup domain as the
robot should be able to detect the goalpost even while being very close
to the goal and in a position to score a goal. The goalpost is found even
though it is right next to the ball which could lead to a false negative due to
the training data mostly consisting of uncovered goalposts with no objects
close to it. This is the case, because that is how the goalpost can be seen
for most of the game.

not used in the proposed solution for this thesis. The labels were created as explained
in 4.4 and then the top part of the label was cropped to only include the bottom part of
the label. This solution was used so the labels already created could be reused and
because this way the labels can be used for the approach of detecting the full goalpost
as well as only the bottom part. For this method, the annotation values were first sorted
by their y-values (the height). Then it was checked if e.g. the top part of the label of
the left side was more than 10 pixels higher than the bottom part of the left side. If it
passed this threshold of 10 pixels the height of this side was reduced by 90 percent of
its height. Following this, the ground truth was created in the same way as explained in
sec. 4.6 based on the smaller label.
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The image 4.8 shows the detection of this approach working over a significant dis-
tance with robots blocking the view of one goalpost. In this example, an error of the
way the label was cropped can be seen. There should either be no label for the right
goalpost as the bottom part of the goalpost is completely occluded by the robot, or the
right goalpost should be in the label completely and marked in the annotation that was
humanly created with "concealed" as defined by the ImageTagger. This shows this ap-
proach of cropping the labels has downsides, however, for most of the images the labels
were created correctly and thus this is not really a problem as is visible by the network
also not having an activation at this position, while still detecting the left goalpost.

The fig. 4.9 shows difficulties with this approach. Since only the bottom part is learned
the advertisement in the example at the top also has an activation of 0.5 which is not
as high as the activation for actual goalposts shown in these example images, but still
significant. This detection is likely due to the bottom part of the advertisement being
a white spot on the image which is positioned right above the field. This might not be
the case for the approach using the full goalpost as the ground truth since in that case
the text of the advertisement would be different from what a regular goalpost looks like
while this part is not relevant for the detection of the bottom part of the goalpost. Due to
the advertisement in this example being right at the edge of the image there is also no
more context to the side of the advertisement which might help the neural network not
to detect this. The context is likely important, since the left part of the advertisement
looks the same on the left and the right side, just being white, the left side has more
context due to the image not being cut off and there is no activation on this side of the
advertisement.

The bottom example in fig. 4.9 shows another problem with this approach. There are
2 true positives that should be detected in this image. The neural network has high
activations at the position where the true positives should be. However, the back of the
goal also has bars that look very similar to the goalpost, with the difference being they
are at the back of the goal and not as high as a goalpost. For this part, a significant
activation is visible at the bottom left in the image. On the other side of the goal where
the same circumstances are true, there is no activation in the output. This might be
due to the goalpost not being cut off, at the border of the image which allows for visible
context. For example, the bar connecting the front of the goal with the back is completely
visible where no activation is in the output, while most of the bar connecting the front to
the back of the goal is not visible in the bottom part of the image space where the false
positive detection occurred.

Another problem was shown in fig. 1.1 where the goalpost was detected, but also a
part of the exhibition hall.

4.8. Two Channels

The approaches presented in sec. 4.6 and sec. 4.7 used the architecture presented in
[SBB18], but instead of the ball learned the goalpost. It is still necessary to detect the
ball however so this would require the layers to compute every layer twice since the
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Figure 4.7.: Input images from [2]. Two images that show the neural network detecting
false positives. In the left image, a pillar of the hall was also detected and
in the middle of the detection of the pillar, the activation is significant. In the
image on the right, no goalpost is present, but the output shows significant
activations on the same pillar as well as a less significant detection on the
shirt of the referee.

Figure 4.8.: Input image from [2]. Only the left goalpost is detected, which is the ex-
pected result, because the right goalpost is occluded by the robot and the
bottom part is thus not visible.
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Figure 4.9.: Input images from [2]. In the top example, there are activations of more
than 0.5 which is not very high, but still significant. In this example, the
advertisement at the boundary of the field is detected, most likely because
it is a white spot on the image which is placed on top of the green field.
In the example at the bottom, 3 significant activations are visible. Two of
them are on the actual goalposts while one is in the bottom left of the image
space. This activation is on a part of the goal which looks like a goalpost
with the difference being it is at the backside of the goal and it is shorter.
This is hard to distinguish since especially the bottom part of the goalpost
looks almost identical to the actual goalpost.
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architectures would be completely distinct with these approaches. This is not feasible
to use, because the computation of the neural network already takes up most of the
time the vision pipeline takes to detect all of the objects in the image. If one of these
approaches were used in a game with the robot the computation time for each frame
would be significantly higher and the robots ability to react in real time to its environment
would be significantly worse. One solution for this is to use the same architecture but
add another output channel. This approach can be done by adding another filter at the
last layer. This second filter means the output of the neural network is two heatmaps
instead of one.

4.9. Two Channels - Bottom Part

The first approach of having two channels was done using only the bottom part of the
layer as the ground truth. As explained in sec. 4.7 this approach could lead to better
results of the calculation of the relative position of the goalpost to the robot. Another
motivation were the results of van Dijk et al. [vDS18] which showed detecting the full
goalpost was not reliably possible with their neural network since it had too many false
positives of not distinguishing between background and goalposts enough.

The results in fig. 4.11 show this approach works well for the detection of the ball, with
high activations at the position of the ball. However, the goalpost channel has almost
no activation. The activation is less than 0.02 for all parts of the image even though two
goalposts are visible in the upper input image.

Fig. 4.12 also shows the ball is detected, while the goalpost output channel has no
activation present. The bottom of the figure shows input images from a different location
and taken by a different camera. The ball is still detected well with an activation of up
to 0.8, the goalpost present in the image is not recognized.

One reason for this could be the label of the goalposts being comparably small be-
cause they are cropped and also the goalpost is further away than the ball in most
situations and training images which leads to smaller labels due to the goalpost being
further away in relative space.

4.10. Two Channels - Full Goalpost

By using the full goalpost label as the ground truth instead of only using a small part at
the bottom of the goalpost the problem in sec. 4.9 can be solved, because if the goalpost
is not detected a larger ground truth of the goalpost leads to a larger error. Thus the
weights are more fitted to detect the goalpost. This is intended to create a trade-off of
detecting the ball not as accurately but tuning the filters of the neural network to also
learn the features of the goalpost. This could be necessary because as pointed out in
[vDS18] the goalposts are less feature-rich than the ball which makes it more difficult to
detect the goalpost correctly.
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4. Approach

Figure 4.10.: The architecture used for the detection of the ball and goalpost. Another
filter has been added in the last convolutional layer to produce another
heatmap.
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4.10. Two Channels - Full Goalpost

Figure 4.11.: Input image from [2]. The Images on the left are the output of the detec-
tion of the goalpost, while the images on the right are the output for the
detection of the ball. The ball is detected with high confidence and no
false positives are present. For the goalpost, there is almost no activation.
There is only an activation of less than 0.02.

Figure 4.12.: Input image from [2]. As in fig. 4.11 the ball is detected with a high ac-
tivation. The goalpost is not detected and there is no activation on the
goalpost layer. The bottom two images are taken with a different camera
and in a different location, but the goalpost is here also not detected, while
the ball is detected.
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Fig. 4.13 shows while false positives still happen there is an activation on both the
goalpost and the ball channel. When a goalpost is present in the image it is detected
accurately. The detection does not cover the full length of the goalpost, but the bottom
part, which is the most important one for the transformation into relative space, is accu-
rately detected. The false positive in this image could be filtered in post-processing by
e.g. checking if the detected object is white and if the object meets the field boundary.
Since the object in this image is not close to the field boundary, it could be ruled out as
a goalpost.

Fig. 4.14 shows the neural network was able to adapt to a different camera with
different settings for the pictures and still detect the goalpost which is not fully visible in
the image as well as the ball.

Due to the ball being significantly more important in a game because it is the main
object of play in soccer, another experiment was started which included more image
sets which included mostly labels for the ball. This was done to change the results of
the trade-off made to have a more accurate ball detection and a less accurate goalpost
detection.
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4.10. Two Channels - Full Goalpost

Figure 4.13.: Input images from [2]. The top image shows the goalpost detection on the
left has activations. However, the activation is a false positive in this case
with a significant value of up to 0.7. The ball on the right side is detected
accurately with an activation of up to 1.0. On the bottom, the goalposts
are detected. The detection does not cover the full height of the goalpost,
but most of the goalpost is detected and the bottom part, which is the
most important is detected. There is a small activation at the backside of
the goal, it is not a high activation though and thus will be filtered out by a
threshold requiring a minimum activation. The ball on the right is properly
detected, again with high activations of up to 0.8
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Figure 4.14.: The input image [2] is from a camera which was not used in the training
set at all. Regardless the ball is detected with a high activation as well as
the goalpost, of which only a small part is visible in the image.
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5. Evaluation

This chapter evaluates the results of the presented approaches by calculating the inter-
section over union for the objects detected.
How to calculate intersection over union is explained in sec. 5.1. Additionally, there is a
special case where the network has no activation passing the threshold and the object
being not in the image. The section also explains why this is considered separately.
The image set used for the evaluation is presented in 5.2.
Data about the training sets including the used amount of labels for the training is de-
scribed in 5.3.
The approach for using a single output channel and detecting the full goalpost is eval-
uated in 5.4, detecting the bottom part of the goalpost with a single output channel is
evaluated in 5.5.
Detecting the ball as well as the goalpost in two channels is evaluated for the bottom
part of the goalpost in 5.6, for the full goalpost in 5.7.
Using more image sets including 1299 ball labels with zero additional goalpost labels is
evaluated in 5.8.
The results of all approaches are summarized in table C in the appendix.

5.1. Intersection over Union Calculation

The intersection over union (IOU) or Jaccard index is a metric used for the evaluation
of the output of neural networks. It compares the manually labeled ground truth with
the output of the neural network. The IOU is defined by the division of the intersecting
area between the ground truth (L) and the output of the neural network (P ) by the area
covered by the ground truth label as well as the neural network output (see eq. 5.1).

IOU =
|L

⋂
P |

|L
⋃
P |

(5.1)

For an FCNN this can be accomplished by applying a threshold on the output of the
network. This means all activations in the output below e.g. 0.6 are regarded as no ac-
tivation. Following this step, the values for each position in the image will be compared
with a logical OR and a logical AND. The union is the number of positions where the
logical OR has returned true, because in this position either the neural network output
had an activation or the ground truth had a label in this position. The intersection is
calculated by the number of positions where the logical AND has returned true since
these are the positions where the ground truth and the neural network output overlap.
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5. Evaluation

The intersection over union is calculated by dividing the value of the intersection by the
value of the union. This means the highest value is 1 if the ground truth is the same as
the prediction of the network. The worst value is 0 if there is no intersection between
the ground truth and the prediction of the network.

The union can be of value zero if the object is not present in the image and the neural
network had no activation. The value of the IOU for this case should be 1 since the
prediction of the neural network is right. However this can skew the data, which is
especially apparent in table 5.3, where the goalposts are not detected, but the mean
IOU for the goalposts including the images with no goalposts is 28.6%. Due to this, the
IOU for the objects is calculated including the cases where no object was present and
the network predicted it correctly and without these cases. The statistic including these
cases is called "including negative data" in the following tables.

5.2. Evaluation Image Set

The image set "bitbots-montreal-game02" [15] from the Hamburg Bit-Bots ImageTagger
was chosen for evaluation, because it is the one used for the evaluation of the vision
pipeline of the Hamburg Bit-Bots [FBG+19] and thus the results are comparable for the
ball and the goalpost detection. It was not used in the training of the network.

5.3. Training Sets

For the training of the networks, several image sets were selected from the ImageTag-
ger of the Hamburg Bit-Bots [2]. The selected image sets are presented in table B.1
in the appendix in more detail. There were 25100 labels of goalposts present in the
used training sets and 43058 labels of balls. For the training with more ball labels, 1299
additional ball labels were used while including no further goalpost label.

5.4. Single Channel - Full Goalpost

Table 5.1.: Single Channel - Full goalpost
IOU for Ball: N/A
IOU for Goalpost: 46.3%
IOU including negative data Ball N/A
IOU including negative data Goalpost 58.0%

The approach of using the full goalpost label with just one output channel had an IOU
for the goalpost of 46.3% and if the negative data for the goalpost is included an IOU
of 58%, as shown in table 5.1. The results are significantly worse than the results
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5.5. Single Channel - Bottom Part of Goalpost

for the ball detection with the same architecture [SBB18]. This is likely due to the
goalpost being less feature-rich than the ball. The mean IOU increasing by 11.7% by
including the images where no goalpost was present in the image and the network had
no detection, shows the network detects true negatives in the image set.

5.5. Single Channel - Bottom Part of Goalpost

Table 5.2.: Single Channel - Bottom Part of Goalpost
IOU for Ball: N/A
IOU for Goalpost: 27.1%
IOU including negative data Ball N/A
IOU including negative data Goalpost 48.0%

The IOU for detecting the bottom part of the goalpost, as shown in table 5.2 is signifi-
cantly worse than the IOU for detection of the full goalpost. A part of this is likely due
to it being hard to detect how much of the goalpost is the bottom part as defined by the
ground truth. If the detection is a little bit smaller than the ground truth, the goalpost
would be detected correctly, but the IOU would still be smaller. Additionally, the example
in fig. 4.8 shows the manual labeling process to create the ground truth was not always
performed correctly, which will further lead to worse results of the IOU. The results show
a 20.9% increase in the IOU if negative data is included in the IOU calculation, which
shows though fewer true positives were detected, true negatives were often detected
correctly.

The low value of the IOU for this experiment shows it was harder to detect the bottom
part of the goalpost for the architecture with the image sets that were used for training.

5.6. Two Channels - Bottom Part of Goalpost

Table 5.3.: Two Channels - Bottom Part of Goalpost
IOU for Ball: 73.9%
IOU for Goalpost: 0.0%
IOU including negative data Ball 73.9%
IOU including negative data Goalpost 28.6%

The results of using two channels as output while learning the bottom part of the goal-
post are shown in table 5.3. The IOU for the goalpost is 0.0% because as was shown
in sec. 4.9, the goalpost channel had no activations and thus there was no intersection
between the ground truth and the output of the neural network for the goalpost. This is
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likely, because as shown in table 5.2 compared to table 5.1 the bottom part of the goal-
post is significantly harder to learn and thus the network only detects the easier ball
and ignores the detection of the goalpost. The IOU for the goalpost including negative
data was, however, 28.6%, because every true negative in the image set was correctly
detected as such, as there was also no activation for these input images. The ball is
detected with an IOU of 73.9%, which is better than the detection of the ball in the vision
pipeline of the Hamburg Bit-Bots [FBG+19], which is likely due to including other image
sets than the ones used in [SBB18].

5.7. Two Channels - Full Goalpost

Table 5.4.: Two Channels - Full Goalpost
IOU for Ball: 65.8 %
IOU for Goalpost: 40.3%
IOU including negative data Ball 65.8%
IOU including negative data Goalpost 49.3%

The detection of the goalpost with 40.3% is significantly better than the results of the
current Hamburg Bit-Bots vision pipeline of 18.3% [FBG+19], with the IOU of the ball
being slightly worse than 67.7% [FBG+19]. The small reduction of the detection of
the ball is because the task of detecting the ball and the goalpost is harder than just
detecting the ball. However the results are not significantly worse, this is likely due to
being able to use feature maps of the convolutional layers for the goalposts as well as
for the ball.

5.8. Two Channels - Full Goalpost with more Ball Labels

Table 5.5.: Two Channels - Full Goalpost with more Ball Labels
IOU for Ball: 69.7%
IOU for Goalpost: 24.9%
IOU including negative data Ball 69.7%
IOU including negative data Goalpost 40%

Including more image sets featuring mainly labels of the ball has led to a significant
decrease in IOU for the goalpost. However, the ball is now detected more accurately
than without these labels and more accurately than the results of the current vision
pipeline of the Hamburg Bit-Bots [FBG+19] with 67.7%.
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5.9. Runtime Difference

5.9. Runtime Difference

The runtime for the two architectures was measured by computing the prediction of the
network in the vision pipeline of the Hamburg Bit-Bots and measuring the time before
the function call and after the function call. To not have outliers influence the values
computed this was measured for more than 200 times for both architectures. The first
runtime value was removed, due to the startup taking multiple seconds and not being
relevant because the robot will be finished with the startup by the time it is put in the
game. The resulting values are shown in table 5.6.

Table 5.6.: Runtime Difference for Architecture with One Channel and Two Channels
Average One Channel Runtime 0.0494 seconds
Average Two Channels Runtime 0.0497 seconds
Median One Channel Runtime 0.0463 seconds
Median Two Channels Runtime 0.0483 seconds

The difference in the average runtime for one and two output channels is 0.0003
seconds, or 0.3 milliseconds. This is an increase in runtime of 0.7%.

The difference of the median is 0.002 seconds or 2 milliseconds.
The difference in runtime is computing the last feature map that was added as well as

transferring the additional output channel from the GPU of the Jetson TX2 to the CPU.
The difference in runtime is insignificant.
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6. Discussion

This chapter discusses the decisions made in the process of the bachelor thesis.
The sec. 6.1 will discuss which image sets were used in the training process as well

as which problems were noticed with the available image sets. Sec. 6.2 discusses
the choice of image set for the evaluation. Deciding which part of the goalpost or the
full goalpost should be the ground truth is discussed in sec. 6.3, while considering the
results of Van Dijk et al. [vDS18]. Whether images containing only ball or only goalposts
labels should be included in the training set is discussed in sec. 6.4.

6.1. Training Data Selection

The training images mostly consist of images that were taken by a human with a phone
at the border of the playing field. This is not optimal since the perspective of the robot
will be different. The robot is smaller than the human which means the robot will have
a lower angle to view his environment. Additionally, the robot will look to the ground in
front of him most of the time, because he will be searching for a ball. This means the
robot will comparably less often be able to see the full goalpost, it will most of the time
see either no goalpost at all or only the bottom part of the goalpost.

The training data was chosen this way because only few image sets were taken
from the perspective of the robot and the labels for the goalpost and ball were mostly
available for image sets taken from the side of the playing field.

More images taken from the robot should have been created and labeled to ensure
the applicability of the neural network to the RoboCup Soccer domain.

The image sets used in the training for the network evaluated in 5.8 only contained
labels of balls. This meant the balls were detected better, however it also led to a
significantly worse detection of the goalposts. This could likely be avoided by having
labels for the goalpost also included in the image set.

6.2. Evaluation Image Set

The image set bitbots-montreal-game02 [15] in the Hamburg Bit-Bots ImageTagger [2]
was chosen as the evaluation image set. This decision was made so the results are
directly comparable to the results published in [FBG+19], which are the results of the
current vision pipeline of the Hamburg Bit-Bots. This image set provides a variety of
angles of the ball and goalposts with moving robots. The images are also from a real
game that was played in the world championship in Montreal in 2018. With a pillar
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visible in the background as well as another field, the detection task is as hard as with
a normal game in the RoboCup Soccer domain unlike a lab environment would be.

However the images were all taken from the side of the field, so a larger part of
the goalposts is visible than the images of the robot would likely be able to capture.
Additionally, it only contains images from a single game which means overfitting for the
exhibition halls or the lighting in the Montreal exhibition hall would not be reflected in
the results of the evaluation.

6.3. Full Goalpost or Bottom Part of Goalpost

Van Dijk et al. [vDS18] had difficulties detecting the full goalpost because for the full
goalpost the network was not able to discern between the goalpost above the field
boundary and the background of the goalpost. The results presented in this thesis had
difficulties detecting only the bottom part of the goalpost while detecting the full goalpost
worked significantly better.

Van Dijk et al. have only used one image set for the training of the ball detection.
If the same image set was used for the training of the goalposts, then the variation in
backgrounds is limited, because only images from one field in one location were used.
This could explain why the network had difficulties generalizing from this data.

The used data for this thesis contained significantly more ball labels than goalpost
labels as mentioned in sec. 5.3. The bottom of the goalpost is less feature-rich than
the full goalpost since it is only a white spot instead of a longer vertical white bar in the
image. Thus the network in this thesis was not able to solve the problem of detecting the
bottom of the goalpost. For the network to be able to detect the bottom of the goalpost,
the perspective the robot will have most of the time, more training data would likely help
to learn this less feature-rich part.

6.4. Filter Images Based on Available Labels

Not for every image in the training set labels for the ball as well as the goalpost were
available. One option of handling this was to only include images for the training where
a label was available for a ball as well as a goalpost. Either a label encompassing the
object or a label marking the object as not visible in the image. This leads of course to
less available training images. This approach was tested early on in the training for two
channels and showed the network was significantly worse in detecting objects because
less diverse training data was available.

Thus the decision was made to include all images containing either a ball or goalpost
label. This meant the ground truth image was a black heatmap where no object was
labeled no matter if the object is present in the image or not. While this will lead to the
weights being changed to avoid false positives, even though the detection was correct,
there is significantly more training data available, especially for the ball.
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7. Conclusion and Future Work

In sec. 7.1 the thesis is concluded. The best approaches are presented and compared
to the current state of the Hamburg Bit-Bots vision pipeline. Possible future work is
mentioned in sec. 7.2.

7.1. Conclusion

The evaluation in sec. 5.7 showed the approach of using two channels in the network
has an IOU of 65.8 for the ball detection and 40.3% for the detection of the goalpost.
The current vision pipeline of the Hamburg Bit-Bots has an IOU of 67.7% [FBG+19] for
the detection of the ball on the same image set as the one used in the evaluation of this
thesis. This means the detection of the ball is slightly worse, however, the detection of
the goalpost in the current vision pipeline has an IOU of 18.3% [FBG+19]. This shows
a significant increase in the goalpost detection with only a small difference in the ball
detection. With the runtime of the prediction of the neural network on average only
taking 0.3 milliseconds longer, this difference is negligible. With post-processing, the
results could be improved even more by filtering out obvious false positives such as
balls over the field boundary. Thus in the future, the neural network could be used in
the vision pipeline of the Hamburg Bit-Bots.

The approach by Van Dijk et al. [vDS18] used a different image set for the evaluation
than the one used in this thesis and is only detecting the bottom of the goalpost. Thus
the results are not directly comparable. The paper had two networks where additionally
training goalposts was also evaluated. The IOU for the network with the higher IOU
was 75.4% for the ball, with the goalpost being detected with 27.3%. The network in
sec. 5.7 had a worse performance for the ball, while the goalposts were significantly
better detected.

Detecting the goalpost with a single output channel had an IOU of 46.3%, which is
better than the approach with two channels, however this is only an increase of 6%
and the increased runtime of running the network once for the ball and again for the
goalpost is not feasible due to the real-time constraint of the robots.

The results presented in this bachelor thesis show the architecture proposed by
Speck et al. [SBB18] is capable of detecting additional object classes other than the
ball by adding another output channel. The cost in runtime of adding another output
channel and the trade-off in accuracy are not significant.
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7.2. Future Work

This section discusses future work which could build on the results of this thesis and
improve them further.

The loss function that is currently used could be improved in the future. The current
loss function calculates the loss by calculating the squared difference between the pre-
diction of the network and the ground truth. The size of the label could be included to
make a small object become more significant to make sure objects further away are also
detected. This could, however, lead to objects which are close having a big bounding
box to being less well detected.

The loss of detecting the goalposts or the ball could be multiplied to value the detec-
tion of one object over another. This could be used to detect less feature-rich objects
by valuing them more in the learning process.

The IMU measurements available in the robot could be used to generate an image
that is not tilted unlike the image taken by the robot. This would lead to goalposts always
being a straight vertical line which might be easier to detect. However, this would also
mean the result of the IMU sensor would be required in the vision pipeline which would
add another dependency to the vision pipeline and time would be required to wait for
the IMU sensor data and to generate an image that is not tilted.

If the input image to the neural network is not tilted a bounding box approach such as
YOLO [RF17] could be used. While the result will not be pixel precise, multiple teams in
the RoboCup Soccer domain use this approach and are able to also detect e.g. robots
with this method.

As discussed in sec. 6.1, the training data consists mostly of data that was recorded
by a human at the side of the field. However, training data captured by a robot would
be more realistic for the domain, since these images would be more similar to images
to other images the robot will see. Thus more images should be recorded this way and
labeled to then be used as training sets.

The labels are currently generated by humans by selecting four points per goalposts.
This is a task that requires a lot of time if a lot of labels are required. One solution for this
would be to take images with AprilTags [Ols11, WO16] in a known position relative to
the robot. AprilTags are a system where targets can be printed and then their position,
orientation and identity are easily detectable with a camera. AprilTags are significantly
easier to detect in the image than goalposts. By knowing the position of the AprilTags,
the goalposts could be automatically labeled, because the goalposts do not move and
thus the relative position of the goalposts to the AprilTags would be enough to generate
the label. However, with this approach, the neural network would likely learn to find the
feature-richer AprilTag rather than the goalpost.

One approach that would solve the problem of detecting the AprilTags instead of the
goalposts would be using two cameras looking into different directions. The cameras
would be calibrated in position to each other by e.g. having the same AprilTag in one
image for both cameras and then calibrating the relative position of the cameras to each
other by calculating where the AprilTag is relative to the cameras. This way the AprilTag
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would not be in the image with the goalposts, but the relative position of the AprilTag to
the goalposts would still be known. With this method, the goalposts could be automati-
cally labeled while having no AprilTag in the image. This would only require moving the
camera to generate thousands of images with known positions of the goalposts.

Another method to generate labels would be to use a different neural network which
is not required to run in real time on a robot to generate labels. This network could
take longer for the detection of the objects but be more precise. The predictions could
be clustered and uploaded to the ImageTagger [FBH18] which provides a verification
function so humans could verify if the label is accurate or not. This would provide a
significantly faster way to generate data than manually creating the labels.

The trained network could be optimized for the use on a robot with e.g. TensorFlow
Lite [16] which is likely to make the prediction faster. This means a deeper network
could be used, since the computation time with optimizations would likely not take much
longer. This would allow for a more accurate detection while not taking longer for the
computation.

A visual compass is currently being developed by the Hamburg Bit-Bots team. The
idea is to find features in the image which will not change during a game outside of the
field boundary for detecting the orientation of the robot on the field. The output of the
visual compass could be taken into consideration to filter false positives of the neural
network because the robot can not see a goalpost on his field if it is looking to the side
of the field.

Since this thesis has shown the neural network is able to detect more than a single
class it could be evaluated if the architecture is also able to find more object classes like
field markings. This would likely not significantly influence the results of the goalpost
and ball detections but could help with the self-localization.
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A. Export Formats

A.1. Imagetagger Export Format for Goalposts

Name: goalpostToYaml
Name format: export_%%exportid.txt
Public: False
Annotations types: AnnotationType: goalpost
Minimum Amount of Verifications needed: 0
Include blurred annotations: True
Include concealed annotations: True
Base format: set: %%imageset

images:
%%content

Group annotations by images: True
Image format: %%imagename:

width: %%imagewidth
height: %%imageheight
annoamount: %%annoamount
annotations:

%%annotations
Annotation format:

-
%%vector

Vector format: - [%%x,%%y]%%br
Not in image format: -

- notinimage

A.2. Imagetagger Export Format for Goalposts and Balls

Name: goalpostToYaml
Name format: export_%%exportid.txt
Public: False
Annotations types: AnnotationType: goalpost

AnnotationType: ball
Minimum Amount of Verifications needed: 0
Include blurred annotations: True
Include concealed annotations: True
Base format: set: %%imageset
images:

%%content
Group annotations by images: True
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Image format: %%imagename:
width: %%imagewidth
height: %%imageheight
annoamount: %%ann%%annotations

Annotation format:
-
%%vector

Vector format: - [%%x,%%y]%%br
Not in image format: -
- notinimage
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B. Training Sets

Table B.1.: The image sets used in the training of the neural networks including the
number of goalpost and ball labels present in these image sets. The im-
age set ID is the id which is used in the Hamburg Bit-Bots ImageTagger.
It can be accessed by visiting the following url: https://imagetagger.
bit-bots.de/images/imageset/{id}/ where {id} is replaced by the
id in the table.

Image Set ID Number of Goalpost Labels Number of Ball Labels
6 1,508 1,009
25 151 1,013
29 125 927
32 118 953

176 401 3
179 279 14
180 945 3
347 1,307 0
374 2,766 0

5 182 1,002
7 117 1,009
13 140 1,000
14 127 1,000
15 156 1,000
16 142 1,012
18 137 1,004
33 115 1,006
36 647 5,612
81 887 1,832

160 280 207
161 280 0
162 859 976
166 1,859 2,045
184 952 747
186 940 876
189 2,825 1,750
35 1,592 2,314

168 198 333
260 730 6,948
12 115 1,003
17 118 1,034
30 105 936
31 103 896

185 628 579
188 224 219
191 2,635 2,769
353 407 052

https://imagetagger.bit-bots.de/images/imageset/{id}/
https://imagetagger.bit-bots.de/images/imageset/{id}/


C. Evaluation of All Approaches

Table B.2.: The additional training sets that were included in the training of the network
with more balls.

Image Set ID Number of Goalpost Labels Number of Ball Labels
153 0 283
156 0 1,016

C. Evaluation of All Approaches
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IOU for Ball N/A N/A 73.9% 65.8% 69.7%
IOU for Goalpost 46.3% 27.1% 0.0% 40.3% 24.9%

IOU including negative Data for Ball N/A N/A 73.9% 65.8% 69.7%
IOU including negative Data for Goalpost 58.0% 48.0% 28.6% 49.3% 40%
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