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Abstract— In the RoboCup Humanoid Soccer League, the
detection of the soccer field as part of the robot’s visual
perception is critical i.e. to distinguish between the relevant
field area and the undefined surrounding area. We propose a
semi-supervised, data-driven, deep learning approach to solve
this challenge. The goal is to get a system, that is more robust
against natural lighting and needs less configuration compared
to the currently popular model-based approaches while keeping
the annotation effort low. For this task, several neural network
architectures have been trained and evaluated.

Index Terms— Semantic Segmentation, Neural Networks,
RoboCup

I. INTRODUCTION
WRITTEN BY JAN GUTSCHE

The visual perception system of autonomous robots is still
an ongoing field of research [4], [7], [9]. The RoboCup
competition started around the early 1990s to promote and
motivate research and development of autonomous mobile
robotics and artificial intelligence (AI) [19]. During a game of
RoboCup soccer, it is critical for the autonomous mobile robot
to sense its environment and furthermore distinguish between
the soccer field area and the surroundings. Therefore detecting
the boundary between these areas (afterwards called field
boundary) is necessary. As this boundary can be interrupted by
obstacles on the field, we often use the convex field boundary,
which is the convex hull over the interrupted field boundary.
A field boundary can be converted into and derived from a
binary image mask representation with pixels below or above
the boundary marked as field or undefined.

This field boundary is important e.g. to exclude false pos-
itives of the robot’s ball-, line- or goal-detection in the
undefined area outside of the field. It is also used to exclude
true positives detected on a secondary soccer field in the same
camera image. Furthermore, the field boundary can be used
as input data for later self-localization processes, as in the
localization package by Hartfill [13].

Various approaches exist, trying to solve the problem of
detecting the convex field boundary. They can be differentiated
into the classes of model- and data-driven approaches. Those
will be presented in detail in Section II.

With DeepField as described in Section III, we propose a
semi-supervised deep learning approach for semantic segmen-

tation of RoboCup soccer fields in camera images. We are
using several neural network architectures of a Keras-based
framework for semantic segmentation by Divamgupta [23]
with semi-automatic generated labels from a model-based
approach by Fiedler et al. [8]. Those will be compared to
each other in regard to their accuracy and runtime. We want
to address the high manual configuration effort and incom-
plete model definitions of model-based approaches as well
as the high effort of manual label annotation of data-driven
approaches.

In Section IV we evaluate the results of our approach and
further discuss those in Section V. Finally, we conclude in
Section VI and give an outlook on future work on this topic
in Section VII.

II. RELATED WORK
WRITTEN BY JAN GUTSCHE

In this Section, we present model-based and data-driven
approaches for solving the problem of detecting the convex
field boundary of a RoboCup soccer field.

A. Model-based approaches

The model-based design uses a model definition, which
consists of a set of rules e.g. mathematical formulas or
algorithms. By analyzing, verifying and validating, the model
gets iteratively improved until the design requirements of the
dynamic system are met [12].

One such model-based design approach is the field boundary
detector of the vision pipeline of the Hamburg Bit-Bots Hu-
manoid League Kid-size RoboCup team by Fiedler et al. [8].
This approach is presented in detail below since our DeepField
approach depends on it. This field boundary detector uses a so
called color detector to segment the image into the field and
other objects based on their color. Color detectors either use
segmentation algorithms based on HSV color representations
or RGB color value lookup tables.

For the HSV method, the color detector uses predefined
minimum and maximum values, to segment an object. In
the case of field segmentation, this method is not suitable,
since the field consists of various colors e.g. noise in the
artificial grass, that can not be represented by such a filter.
Especially when considering natural lighting conditions, this
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method requires several manual configurations during a game
to work properly, which contradicts the fundamentals of an
autonomous robot.

The method based on lookup tables is more suitable for
field segmentation since the filter uses a table that consists of
predefined RGB color values, that are manually classified as
the field. This allows a much more precise configuration and
is, therefore, more accurate. Optionally, additional color values
of pixels surrounded by other pixels with known field color
can temporarily be added to this lookup table to adapt this
method dynamically to natural lighting changes. The downside
of using lookup tables is the high manual configuration effort
by selecting color values to classify them as the field. As
the circumstances require, this configuration process could be
necessary prior to each game and for each soccer field.

The field boundary detector uses the resulting segmented
binary images of the color detector. Multiple implementations
of field boundary detectors exist, but all follow the same
principle of analyzing the binary image column-wise for areas
classified as the field. For each column, the algorithm searches
for the border between image areas with at least a certain
amount of field pixels and areas with a lower amount (defined
by a threshold). The field boundary algorithm either searches
from top to bottom or from bottom to top. The second search
method helps to reduce errors due to multiple fields in the
image since the relevant field is always at the bottom. The field
boundary detector blurs the thresholded mask to fill in gaps
and to compensate for lines that are typically not classified as
a field color. Points at the left and right end of the resulting
convex field boundary can be misleading because the convex
field boundary can not accurately represent the truth in case
of obstacles covering field area at the edges of the image.

The model-based approach of the RoboCup standard plat-
form league team HULKs [3] uses two distinct methods to
classify pixels of the image as the field. First, the team
uses predefined thresholds for chromaticity in the YCbCr
color representation similar to the HSV color detector above.
Second, a derived version of k-Means [17] as a clustering
algorithm to find clusters of similar colors gets used. An
algorithm for one-dimensional edge detection gets combined
column-wise with the field color classification to determine the
field boundary. Those methods may work well in the domain
of the RoboCup standard platform league, but also require
some configuration and calibration before the game and may
fail under the impact of natural light.

B. Data-driven approaches

Data-driven approaches are based on a large number of
question / answer pairs, the training data. The training process
tries to optimize a model in such a way, that it mimics the
answer to a given question. After successful training, the
model is able to inference the answer of a unknown question
on its own [6].

The RoboCup Humanoid KidSize League team MRL has
developed a data-driven approach to solve the problem of
detecting the convex field boundary. Their assumption is, that

the convex field area of an image could always be described
as a polygon of five points. Therefore, the output or answer of
the model can be described as a five-tuple of points. As input
data or questions respectively, images in the HSV color space
were chosen. [18]

The MRL team ”designed a custom base network that
performs feature extraction. [...] [They] also adopted two
layers of fully connected neurons on top [...] performing
regression of the outputs”. [18] The team described the initial
result as promising but wants to improve this approach by
further investigation.

We have no information about how large the used dataset
was, but typical for a data-driven approach, it is necessary
to annotate each and every image with the corresponding
polygon, which requires lots of manual work.

III. APPROACH
WRITTEN BY FLORIAN VAHL

To solve the challenges described in Section I, we trained
several convolutional neural networks, that are built for the
task of semantic image segmentation.

In our case, these networks are trained using semi-
automatically generated labels. The generated binary label is
covering the image regions which represent the field in the
image. The human input is restricted to the configuration of
the labeling model, which is based on the approach of the
Hamburg Bit-Bots Vision Pipeline [8] (described in Section II)
and the filtering of edge cases where the labeling model
fails because of a scenario that is not properly covered or
realistically coverable in the explicit model definition.

A. Dataset

The dataset which is used for this project contains 9188
RGB images which were recorded at multiple RoboCup com-
petitions from 2016 to 2019 and our laboratory.

The images are taken with various cameras including mostly
footage from a Basler acA2040-35gc with 12 mm focal
length optics and a Logitech c910, besides that, some image
sequences are taken from regular smartphone cameras.

Our dataset also contains 2184 contextless in- and outdoor
images as negative data to prevent overrepresentation of im-
ages where the field always covers the bottom half of the
image.

The image sequences in this dataset are organized by their
recording session to differentiate images taken at different sce-
narios, which allows an easier configuration for each scenario
separately.

B. Label generation

To train the neural networks on the given dataset, some kind
of ground truth is needed. Each of these labels consists of a
binary image with the same vertical and horizontal resolution
as the corresponding image. They can be provided by humans
who use their knowledge, to annotate the whole dataset with
the intended output. This supervised approach is very laborious
because many manual annotations are needed.
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Figure 1. Data flow of the proposed training and labeling pipeline. Steps that
require manual input are located on the left side of the figure while automated
ones are on the right. The video input on the top stands for the image input
from the dataset. The bottom right box stands for the output into the neural
network training.

To reduce the work done by a human we use the existing
field boundary detection model of the Hamburg Bit-Bots [8]
to generate the labels. The used model-based detection is
discussed and described in Section II. The training concept’s
dataflow is visualized in Figure 1. Because the model needs
some manual configuration for different lighting conditions,
cameras, and scenarios a new configuration is created for every
scenario in our dataset. If the configuration is finished the
corresponding image sequence can be annotated automatically.

In the configuration, a tool called color picker is used to
select the unique colors of the field. It is a part of the Hamburg
Bit-Bots vision package1. The tool shows the video stream,
while colors can be added or removed by clicking on them
with a resizable selector. It outputs a lookup table file in the
.pickle file encoding. This lookup table is then passed to the
field boundary detection model for the automatic annotation
of all pictures in that sequence.

The task of selecting the field colors by clicking on them
takes less human effort than annotating each image individ-
ually. This is especially useful if the image sequence is very
long because adding images from the same scenario doesn’t
add more human effort in this step. But there is a trade-off
between the diversity of scenarios and the amount of human
configuration because more scenarios need more human-made
lookup tables. This challenge is addressed in Section III-C by
adding data augmentation [21] to our labeled dataset.

The automated annotation is done by a heavily modified
version of the Hamburg Bit-Bots vision pipeline2 which loads
all image sequences with the corresponding configuration,
executes its field boundary algorithm and saves the resulting
label. This can be done for the whole dataset at once, so it
takes very little effort to do so.

The field boundary detection model has some edge-cases

1https://github.com/bit-bots/bitbots vision
2https://github.com/bit-bots/bitbots vision/tree/feature/projekt/autolabel

Figure 2. The auto-generated label (purple overlay) shows a significant offset
relative to the real world field boundary. This happened because a wrong
color, in this case, the black tone of the wifi stand, accidentally occurred in
the lookup table.

in which the estimated field boundary is wrong. An example
can be seen in Figure 2. This happens due to various reasons.
First of all the model is also designed with maintainability
and limited complexity in mind, so it is still understandable
and adjustable by the developer. In this case, some errors
are accepted due to a better cost/benefit ratio. Furthermore,
a model which is covering all unlikely scenarios would be
very hard to design if not unrealistic. There are also errors
occurring due to environment/lighting changes in the scenario
or slightly wrong configurations.

To suppress a transfer of this model flaws into our neural
network model the auto-generated labels are manually re-
viewed. In contrast to the configuration, the manual effort for
this review scales with the number of total images. But the
effort spent on each image is still quite low because most
images are labeled correctly (99.5 percent are correct) and
the reviewer can watch the sequence with more than realtime
speed until a wrong one is noticed. If such an image occurs it
is deleted from the training dataset. It could also be manually
annotated instead (see future work in Section VII for further
details on this topic).

C. Data Augmentation

Data augmentation [21] is applied to use the available
scenarios more efficiently. This should help training the neural
networks on a wider variety of lighting conditions, field struc-
tures, and other environmental conditions without adding more
scenarios in our dataset. This task gets more important when
we consider running this system in natural light conditions,
which require coverage of a greater variety of scenarios.

The data augmentation randomly applies a variety of filters
and transformations. An example can be seen in Figure 7.

Some of the used filters are a Gaussian blur, an average
blur, a median blur, sharpening kernels, a simplex noise filter,
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Figure 3. Image Figure 4. Label

Figure 5. Augmented Image Figure 6. Augmented Label

Figure 7. The data augmentation applies several filters and transformations
on the input (upper row) which results in the augmented image and label
(lower row)

an additive Gaussian noise, changes in the hue, saturation,
brightness, and contrast of the image. Transformations such
as elastic transforms, flips along the vertical axis, perspective
transform or cropping are applied to the image and the
label. For this task, a python library called imgaug3 is used.
Horizontal flipping is not applied since we want to keep the
spacial correlation of multiple fields in image space, such that
only the lower one is classified as the field.

D. Training

The labeled dataset is used to train multiple convolutional
neural networks.

All networks are provided by and trained with the image-
segmentation-keras [23] python library build on top of the
popular Keras [5] and TensorFlow [1] frameworks. Every
network we have used is built for the task of semantic seg-
mentation, so they are capable of pixel-precise classification.
All tested network models follow an encoder-decoder scheme
and the framework allows all possible encoder and decoder
combinations. The used model architectures are

• Vanilla (framework default),
• VGG16 [22],
• MobileNet [11]
• ResNet [10]

on the encoder side, and
• FCN-8 / FCN-32 [15],
• Segnet [2],
• U-Net [21],
• PSPNet [26]

on the decoder side.
This allowed us to train all combinations for 60 epochs on

our dataset using a simple script.

3https://github.com/aleju/imgaug

In the training process, a Hold-Out-Cross-Validation has
been applied by splitting the dataset in a training and an
evaluation dataset with a 1:2 ratio respectively. This allowed a
non-loss based performance indication while training. For the
comparison of the different architectures, a separate manually
annotated dataset has been used.

The loss function itself is based on the Keras categorical
crossentropy package. As an optimizer adadelta [25] has been
used.

The hardware setup consists of two Nvidia RTX 2080 TI
GPUs and a AMD Ryzen Threadripper 2950X CPU. It was
provided by Ministry of Science, Research and Equalities of
Hamburg as part of a student research program. The GPUs
where mainly used for training and evaluation inference of
the networks, while the CPU ran the parrallelized and model-
based labeling pipeline. This allowed fast training, evaluation
and labeling even at the same time. Most of the discussed
models trained their 60 epochs in only a few minutes.

IV. EVALUATION

To evaluate the real-world performance of our approach,
every encoder-decoder combination has been evaluated au-
tomatically for every of its 60 trained epochs on a special
evaluation dataset.

Figure 8. Each epoch of every covered model has been evaluated against our
evaluation dataset. The bars show the mean accuracy and standard deviation of
the top 30 percent epochs. The Jaccard Index between the manually annotated
segmentation and the predicted segmentation has been used as the metric.

A. Evaluation dataset
written by Florian Vahl

The used evaluation dataset has been proposed by Fiedler
et al. in the evaluation of their RoboCup vision pipeline [8].
The dataset consists of 709 images captured during a game in
the 2018 RoboCup competition located in Montreal, Canada.
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It includes footage of non-Bit-Bots robots playing an active
game. Every image is manually annotated with all RoboCup
relevant classes including all visible balls, robots, goalposts,
obstacles, lines, penalty crosses, and the convex field bound-
ary. In our case, the only relevant class is the field boundary.
The other annotated classes lead to the opportunity of further
evaluation if other features like lines or obstacles are included
(see Section VII for further details). All images and scenarios
covered in the evaluation dataset are excluded from the training
dataset.

For the evaluation of natural light conditions, we propose an
additional more demanding dataset consisting of 750 images
taken at the 2019 RoboCup competition located in Sydney,
Australia. For better comparability with the paper of Fiedler
et al. [8] and a differentiation between current and future
challenges, it is only used in part IV-D. The data set features
bright sunlight shining at a low angle onto the field, resulting
in different shadow patterns and brightness conditions. The
dataset is also recorded from the robot’s perspective, resulting
in a more realistic scenario with an accurate point of view and
robot parts that are obscuring the field.

B. Metrics
written by Florian Vahl

As a metric, the Jaccard Index, also known as intersection
over union (IOU), is used to quantify the error of the predicted
segmentation. The metric is used to describe the similarity of
bounding boxes or image masks like segmentations, which
makes it a commonly used metric (see [8], [14], [16], [24])
with build-in framework support.

C. Accuracy
written by Florian Vahl
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Figure 9. This graph shows the accuracy of the architectures measured as
the mean Jaccard Index between the manually annotated segmentation and
the predicted segmentation for a subset of the tested architectures. The blue
line represents the U-Net Mini. The purple line represents the Segnet decoder
with a vanilla encoder. The red line represents also a Segnet decoder, but with
a MobileNet encoder. The straight light red line marks the performance of
the manually optimized model-based approach of the Bit-Bots Vision [8].

The evaluation of all network architectures at every epoch
resulted in interesting results. A subset of the evaluated
architectures can be seen in Figure 9.

While the U-Net-Mini fails to reach an accuracy near that
of the conventional model-based approach, it also shows no
converging to a maximum value with progressing epochs.
A manual inspection of the predicted segmentation showed
many artifacts all over the image. One explanation could be
a not feasible model architecture for this kind of problem.
Another one could indicate a problem or bug while training
the network. This leaves room for further evaluation and
testing. For example, other U-Net based architectures resulted
in much better results as seen in Figure 8. The MobileNet-
Segnet network achieved a constant very high accuracy, out-
performing the vanilla version in Figure 9 and the labeling
model (indicated in Figure 9 as a red line) beginning already
at epoch 0. This raises the question of how much influence
the encoder choice makes in terms of accuracy.
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Figure 10. This graph shows the inference accuracy measured as the
Jaccard Index between the manually annotated segmentation and the predicted
segmentation on the evaluation dataset for the different encoders for each of
the 60 trained epochs. The straight light red line shows the performance of
the manually optimized model-based approach of the Bit-Bots Vision [8].
The other red line represents the mean performance of all the MobileNet
encoder based networks. The purple one represents the ResNet based ones,
the turquoise line shows the vanilla based encoders and the green line the
VGG based ones.

In Figure 10 can be seen that the encoder makes a big
difference regardless of the used decoder. Networks using the
MobileNet encoder produced the highest accuracy and most
consistent results.

A manual inspection of all evaluation predictions showed
that the MobileNet based approaches could distinguish the
field the robot is standing on from the irrelevant neighbor
fields. Which is a frequent situation at RoboCup competitions.

The overall best performance showed the FCN-8-MobileNet
encoder-decoder combination. It achieved a Jaccard Index of
0.969 which is a significant improvement in contrast to the
model-based approach which achieved a score of 0.925 as
seen in Figure 8. Detecting every image in the evaluation
dataset completely as the field would result in an IOU of
0.572, therefore relatively small changes can result in huge
performance differences. Another manual inspection of the
results showed, that the model-based approach, which was also
used for the label generation, always had a small offset in the
upwards direction relative to the ground truth. This resulted in
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a little offset in the labels which the neural networks adopted.
Removing this offset could further increase the performance
of the resulting networks, but for now, this offset seems small
enough to be ignored in real-world applications.

In Figure 8 all encoder-decoder combinations are compared
to each other. The mean value and standard deviation of only
the top 30 percent of all the epochs are included to reduce
outliers while considering the fact that the performance of
different networks increases at different rates and also maybe
decreases in later epochs due to over-fitting. The figure also
includes the optimized vision performance of the paper from
Fiedler et al. [8] and the performance with default values
which result in no reliable detections due to the need for man-
ual configuration. Furthermore, eight networks outperformed
the model-based approach. As also indicated in Figure 10 non
of them use a VGG or Vanilla encoder.

D. Natural light accuracy
written by Florian Vahl

The handling of natural light conditions will be critical
in future RoboCup competitions. Therefore, we introduced a
special dataset which is described in Section IV-A. We have
only evaluated neural networks that outperformed the model-
based approach under normal conditions (as seen in Figure 8).
As can be seen in Figure 11 the MobileNet-U-Net combination
performed the best under these conditions. It should be noted
that there are no natural light conditions covered in the
training dataset at the moment. Adding these would probably
result in a further performance increase of these data-driven
approaches. The model-based approach needed configuration
using a color lookup table for this specific scenario, which
should be considered when the approaches are compared.
Using the default color lookup table for the model is not
suitable as seen in Figure 8.

Figure 11. This graph shows the accuracy measured as the IOU between
the manually annotated segmentation and the predicted segmentation on
the natural light evaluation dataset for all architectures that exceeded the
performance of the Bit-Bots vision in the normal evaluation.

E. Runtime
written by Jan Gutsche

Generally, low runtime values are preferred, because in a
closed-loop system this means, the system could react faster
to the environment, achieve a higher cycle frequency or could
use the available computing resources for other tasks. A
common concern of data-driven neural network approaches is

their higher inference time compared to model-based ones.
Therefore a comparison between absolute timing values of
the used neural network architectures and the currently used
model-based approach is needed. These absolute values are
only meaningful when our DeepField approach is fully in-
tegrated into the robot’s software and hardware stack since
the real-world performance can vary significantly after ap-
plying software- and hardware-optimizations and integration.
Those steps are not completed for the time of writing (see
Section VII), as a result of that, this comparison will focus on
relative performance differences between the model architec-
tures, not the absolute inference time.

All timing measurements were taken on the same evaluation
dataset with an Intel CPU Core i5-8259U @ 8x 3.8GHz
integrated in the Intel NUC 8i5bek2 without any software- or
hardware-optimizations. The runtime measurement of the Bit-
Bots vision pipeline only represents the processes involved
with detecting the convex field boundary. The Intel NUC
computer family is commonly used in the RoboCup Humanoid
Leagues, as it is the main computer model of many robot plat-
forms [20]. The inference time does not change significantly
for different epochs of one model, therefore we have used
untrained models for timing measurements.

Figure 12. This graph depicts the mean inference time per image over the
evaluation dataset of each model alongside of their standard deviation. The
model-based Bit-Bots vision pipeline approach with specific configuration
optimized for the dataset is shown in red. The data-driven models are shown
in blue.

As can be seen in Figure 12, with 0.012s needed to calculate
the convex field boundary of one image, the model-based Bit-
Bots vision pipeline is at least 2.8 times faster than every data-
driven architecture. Compared to FCN8-ResNet50 or FCN32-
ResNet50 the model-based approach is over 20 times faster.
The fastest neural net architectures in our comparison are
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PSPNet (0.034s), U-Net-Mini (0.051s) and MobileNet-Segnet
(0.057s) with low standard deviation.

F. Cost-Benefit
written by Jan Gutsche

The goal is to choose a neural net architecture, that satisfies
our needs. As DeepField should be used in the RoboCup
domain, we want a reliable data-driven solution, that per-
forms accurately in various scenarios with limited computing
resources. Therefore, we have to combine the metrics of
accuracy and runtime. The cost-benefit ratio combines them by
dividing the mean inference time (s) by the accuracy (IOU) of
the model, so we get seconds per IOU (s/IOU), which gives an
overview of each model’s performance. The goal is to achieve
a low cost-benefit ratio, as this means to get high benefit with
low cost.

As the evaluation of the runtime (Section IV-E) showed,
we can not expect better runtime performance from our data-
driven approach than the model-based, but we want the best
accuracy at a minimum runtime. For this reason, we have
selected all neural net architectures with a higher accuracy
than the model-based approach by the Hamburg Bit-Bots and
compared them in Figure 13.

Figure 13. This graph shows the cost-benefit ratio (s/IOU) of the most
accurate data-driven models (blue) in comparison to the model-based Bit-
Bots vision pipeline approach (red) with specific configuration optimized for
the dataset.

As can be seen, the cost-benefit ratio of the Bit-Bots vision
pipeline can not be reached by any neural net architectures,
since it is faster. MobileNet-Segnet is the best performing
data-driven architecture with MobileNet-U-Net and ResNet50-
Segnet performing slightly less.

V. DISCUSSION
WRITTEN BY FLORIAN VAHL

A. Performance

As seen in the evaluation (Section IV) in Figure 9 some
data-driven models perform even better than the Bit-Bots
vision model which was used for their label generation. This
raises the question if the manual label verification is the
reason for the better performance. Another explanation would
be the usage of data augmentation. Training the networks
without data augmentation resulted in the same accuracy on
the validation data set, but produced less accurate results on
e.g. natural light condition scenarios that are not covered in
the vision evaluation set from Fiedler et al. [8]. Therefore

the manual verification is working and helps the data-driven
approaches outperform their labeling model.

B. Comparison with other approaches

A direct comparison is difficult, due to the lack of evaluation
data from the other approaches covered in Section II except the
Bit-Bots Vision [8]. The description from the MRL RoboCup
team indicates unsatisfying results, but without explicit data
this is hard to quantify [18]. In general, the runtime of our
data-driven approach has to be optimized to compete with
the model-based ones. But considering the lower configuration
effort, unexploited runtime optimization possibilities and the
higher accuracy, it looks like a reasonable alternative.

C. Evaluation Dataset

A problem that occurred in the evaluation was a bias related
to the main evaluation data set. While the data set allowed
easy comparison with the paper of Fiedler et al. [8], it has
significant problems for the purpose as an evaluation data set.
First of all, it only contains images from one game in one
perspective which only changes slightly. While the scenario
is a typical gameplay scenario, a larger variety of scenarios
in the evaluation dataset would represent a RoboCup soccer
game more realistically. It includes images with two visible
fields but lacks other scenarios. In contrast to the training set,
the evaluation data set contains no images from the robot’s
point of view, for example, looking at its limbs. These special
cases for the field detection, are therefore not covered in the
evaluation dataset. One goal of the DeepField approach was
to improve the accuracy in natural light conditions. Therefore
this could not be measured with this dataset and a new dataset
had to be introduced for this purpose. One bias that is covered
correctly in the existing evaluation data set is the usage of non
Wolfgang robots which are also not contained in the training
data set. This leaves room for the creation of a more versatile
RoboCup evaluation dataset in the future.

VI. CONCLUSION
WRITTEN BY JAN GUTSCHE

With DeepField, we presented a novel data-driven approach
for semi-supervised RoboCup soccer field image segmentation
with natural light conditions to minimize the manual configu-
ration and annotation effort.

We have used an existing model-based approach by Fiedler
et al. [8] to generate the training data needed to train sev-
eral neural net architectures implemented in a Keras-based
framework for semantic segmentation by Divamgupta [23]. All
available architectures have been trained and evaluated by their
accuracy and runtime performance. MobileNet-Segnet appears
to be the best performing model in our cost-benefit analysis.
This architecture also proved to outperform the model-based
approach, especially in natural light conditions.

VII. FUTURE WORK
WRITTEN BY FLORIAN VAHL

Since the detection of the field in the camera image could
be achieved with a high accuracy (see Section IV), adding
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other classes such as lines or obstacles on the field seems like
a plausible next step.

It could also be evaluated if a model trained on a big convex
field boundary detection dataset could be used for transfer
learning to train other models which include also lines and
obstacles. The new model could not only profit from the ability
to detect the field, but it could also use the fact, that the convex
field boundary includes all obstacles and lines on the field.
Therefore the model has probably already a representation of
these classes in the form of the convex field boundary. This
could speed up the training and lower the amount of data
needed for the line and obstacle classes.

If further evaluation, testing and optimization works as
intended, the proposed approach with the Segnet-MobileNet
model could be integrated into our current vision pipeline [8].
This would allow us better performance in the future while
playing in natural light conditions. It also would reduce the
amount of configuration work needed by the team members
during a competition.

Even if the current model architectures worked fine, they
are mostly designed to handle more classes and more complex
situations. A custom architecture could be used to improve the
inference time.

Not only in the RoboCup domain, data-driven approaches
become more popular in the recent years. They are replacing
the previously used model-based approaches. Therefore train-
ing pipelines like these could be used outside the RoboCup
context to convert model-based approaches to data-driven ones
while keeping the annotation overhead low.
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